<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • List specific transport mechanisms occurring in different parts of the nephron, including active transport, osmosis, facilitated diffusion, and passive electrochemical gradients
  • List the different membrane proteins of the nephron, including channels, transporters, and ATPase pumps
  • Compare and contrast passive and active tubular reabsorption
  • Explain why the differential permeability or impermeability of specific sections of the nephron tubules is necessary for urine formation
  • Describe how and where water, organic compounds, and ions are reabsorbed in the nephron
  • Explain the role of the loop of Henle, the vasa recta, and the countercurrent multiplication mechanisms in the concentration of urine
  • List the locations in the nephron where tubular secretion occurs

With up to 180 liters per day passing through the nephrons of the kidney, it is quite obvious that most of that fluid and its contents must be reabsorbed. That recovery occurs in the PCT, loop of Henle, DCT, and the collecting ducts ( [link] and [link] ). Various portions of the nephron differ in their capacity to reabsorb water and specific solutes. While much of the reabsorption and secretion occur passively based on concentration gradients, the amount of water that is reabsorbed or lost is tightly regulated. This control is exerted directly by ADH and aldosterone, and indirectly by renin. Most water is recovered in the PCT, loop of Henle, and DCT. About 10 percent (about 18 L) reaches the collecting ducts. The collecting ducts, under the influence of ADH, can recover almost all of the water passing through them, in cases of dehydration, or almost none of the water, in cases of over-hydration.

Locations of secretion and reabsorption in the nephron

This diagram shows the different ions and chemicals that are secreted and reabsorbed along the nephron. Arrows show the direction of the movement of the substance.
Substances Secreted or Reabsorbed in the Nephron and Their Locations
Substance PCT Loop of Henle DCT Collecting ducts
Glucose Almost 100 percent reabsorbed; secondary active transport with Na +
Oligopeptides, proteins, amino acids Almost 100 percent reabsorbed; symport with Na +
Vitamins Reabsorbed
Lactate Reabsorbed
Creatinine Secreted
Urea 50 percent reabsorbed by diffusion; also secreted Secretion, diffusion in descending limb Reabsorption in medullary collecting ducts; diffusion
Sodium 65 percent actively reabsorbed 25 percent reabsorbed in thick ascending limb; active transport 5 percent reabsorbed; active 5 percent reabsorbed, stimulated by aldosterone; active
Chloride Reabsorbed, symport with Na + , diffusion Reabsorbed in thin and thick ascending limb; diffusion in ascending limb Reabsorbed; diffusion Reabsorbed; symport
Water 67 percent reabsorbed osmotically with solutes 15 percent reabsorbed in descending limb; osmosis 8 percent reabsorbed if ADH; osmosis Variable amounts reabsorbed, controlled by ADH, osmosis
Bicarbonate 80–90 percent symport reabsorption with Na + Reabsorbed, symport with Na + and antiport with Cl ; in ascending limb Reabsorbed antiport with Cl
H + Secreted; diffusion Secreted; active Secreted; active
NH 4 + Secreted; diffusion Secreted; diffusion Secreted; diffusion
HCO 3 Reabsorbed; diffusion Reabsorbed; diffusion in ascending limb Reabsorbed; diffusion Reabsorbed; antiport with Na +
Some drugs Secreted Secreted; active Secreted; active
Potassium 65 percent reabsorbed; diffusion 20 percent reabsorbed in thick ascending limb; symport Secreted; active Secretion controlled by aldosterone; active
Calcium Reabsorbed; diffusion Reabsorbed in thick ascending limb; diffusion Reabsorbed if parathyroid hormone present; active
Magnesium Reabsorbed; diffusion Reabsorbed in thick ascending limb; diffusion Reabsorbed
Phosphate 85 percent reabsorbed, inhibited by parathyroid hormone, diffusion Reabsorbed; diffusion

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask