This page is optimized for mobile devices, if you would prefer the desktop version just click here

5.2 Waves and wavelengths

By the end of this section, you will be able to:
  • Describe important physical features of wave forms
  • Show how physical properties of light waves are associated with perceptual experience
  • Show how physical properties of sound waves are associated with perceptual experience

Visual and auditory stimuli both occur in the form of waves. Although the two stimuli are very different in terms of composition, wave forms share similar characteristics that are especially important to our visual and auditory perceptions. In this section, we describe the physical properties of the waves as well as the perceptual experiences associated with them.

Amplitude and wavelength

Two physical characteristics of a wave are amplitude and wavelength ( [link] ). The amplitude    of a wave is the height of a wave as measured from the highest point on the wave ( peak    or crest ) to the lowest point on the wave ( trough    ). Wavelength refers to the length of a wave from one peak to the next.

The amplitude or height of a wave is measured from the peak to the trough. The wavelength is measured from peak to peak.

Wavelength is directly related to the frequency of a given wave form. Frequency refers to the number of waves that pass a given point in a given time period and is often expressed in terms of hertz (Hz)    , or cycles per second. Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies ( [link] ).

This figure illustrates waves of differing wavelengths/frequencies. At the top of the figure, the red wave has a long wavelength/short frequency. Moving from top to bottom, the wavelengths decrease and frequencies increase.

Light waves

The visible spectrum    is the portion of the larger electromagnetic spectrum    that we can see. As [link] shows, the electromagnetic spectrum encompasses all of the electromagnetic radiation that occurs in our environment and includes gamma rays, x-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The visible spectrum in humans is associated with wavelengths that range from 380 to 740 nm—a very small distance, since a nanometer (nm) is one billionth of a meter. Other species can detect other portions of the electromagnetic spectrum. For instance, honeybees can see light in the ultraviolet range (Wakakuwa, Stavenga,&Arikawa, 2007), and some snakes can detect infrared radiation in addition to more traditional visual light cues (Chen, Deng, Brauth, Ding,&Tang, 2012; Hartline, Kass,&Loop, 1978).

Light that is visible to humans makes up only a small portion of the electromagnetic spectrum.

In humans, light wavelength is associated with perception of color ( [link] ). Within the visible spectrum, our experience of red is associated with longer wavelengths, greens are intermediate, and blues and violets are shorter in wavelength. (An easy way to remember this is the mnemonic ROYGBIV: r ed, o range, y ellow, g reen, b lue, i ndigo, v iolet.) The amplitude of light waves is associated with our experience of brightness or intensity of color, with larger amplitudes appearing brighter.

<< Chapter < Page Page > Chapter >>
MCQ 5 FlashCards 2 Terms 11

Read also:

OpenStax, Psychology. OpenStax CNX. Feb 03, 2015 Download for free at https://legacy.cnx.org/content/col11629/1.5
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.