This page is optimized for mobile devices, if you would prefer the desktop version just click here

Introduction

Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any pigmentation but are the result of light interference, which enhances specific wavelengths for a given thickness of the film.

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and, in fact, all types of waves.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water could produce them, you have hit upon one of the many phenomena that can only be explained by the wave character of light (see [link] ). The same is true for the colors seen in an oil slick or in the light reflected from a DVD disc. These and other interesting phenomena cannot be explained fully by geometric optics. In these cases, light interacts with objects and exhibits wave characteristics. The branch of optics that considers the behavior of light when it exhibits wave characteristics is called wave optics    (sometimes called physical optics). It is the topic of this chapter.

<< Chapter < Page Page > Chapter >>

Read also:

OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.