<< Chapter < Page Chapter >> Page >
m v 2 r = μ s mg . size 12{m { {v rSup { size 8{2} } } over {r} } =μ rSub { size 8{s} } ital "mg"} {}

We solve this for μ s size 12{μ rSub { size 8{s} } } {} , noting that mass cancels, and obtain

μ s = v 2 rg . size 12{μ rSub { size 8{s} } = { {v rSup { size 8{2} } } over { ital "rg"} } } {}

Solution for (b)

Substituting the knowns,

μ s = ( 25.0 m/s ) 2 ( 500 m ) ( 9 . 80 m/s 2 ) = 0 . 13 . size 12{μ rSub { size 8{s} } = { { \( "25" "." 0" m/s" \) rSup { size 8{2} } } over { \( "500"" m" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } } =0 "." "13"} {}

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion

We could also solve part (a) using the first expression in F c = m v 2 r F c = mr ω 2 } , size 12{ left none matrix { F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } {} ##F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } right rbrace ,} {} because m , size 12{m,} {} v , size 12{v,} {} and r size 12{r} {} are given. The coefficient of friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the curve if the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less than but no more than μ s N size 12{μ rSub { size 8{g} } N} {} . A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal force would be less as will be discussed below.

In the given figure, a car is shown from the back, which is turning to the left. The weight, w, of the car is shown with a down arrow and N with an up arrow at the back of the car. At the right rear wheel, centripetal force is shown along with its equation formula in a leftward horizontal arrow. The free-body diagram shows three vectors, one upward, depicting N, one downward, depicting w, and one leftward, depicting centripetal force.
This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves , where the slope of the road helps you negotiate the curve. See [link] . The greater the angle θ size 12{θ} {} , the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked curves. In an “ideally banked curve,” the angle θ size 12{θ} {} is such that you can negotiate the curve at a certain speed without the aid of friction between the tires and the road. We will derive an expression for θ size 12{θ} {} for an ideally banked curve and consider an example related to it.

For ideal banking    , the net external force equals the horizontal centripetal force in the absence of friction. The components of the normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the vertical and horizontal directions.

[link] shows a free body diagram for a car on a frictionless banked curve. If the angle θ size 12{θ} {} is ideal for the speed and radius, then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight w size 12{w} {} and the normal force of the road N size 12{N} {} . (A frictionless surface can only exert a force perpendicular to the surface—that is, a normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has magnitude mv 2 /r size 12{"mv" rSup { size 8{2} } "/r"} {} . Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask