This page is optimized for mobile devices, if you would prefer the desktop version just click here

9.3 Problem-solving  (Page 2/3)

Alicia's solution

Scene #4: willem’s and rachel's alternative strategies

Meanwhile, Willem worked on the problem. As it happened, Willem loved puzzles of all kinds, and had ample experience with them. He had not, however, seen this particular problem. “It must be a trick,” he said to himself, because he knew from experience that problems posed in this way often were not what they first appeared to be. He mused to himself: “Think outside the box, they always tell you…” And that was just the hint he needed: he drew lines outside the box by making them longer than the matrix and soon came up with this solution:

Willem's and Rachel's solution

When Rachel went to work, she took one look at the problem and knew the answer immediately: she had seen this problem before, though she could not remember where. She had also seen other drawing-related puzzles, and knew that their solution always depended on making the lines longer, shorter, or differently angled than first expected. After staring at the dots briefly, she drew a solution faster than Alicia or even Willem. Her solution looked exactly like Willem's.

This story illustrates two common features of problem solving: the effect of degree of structure or constraint on problem solving, and the effect of mental obstacles to solving problems. The next sections discuss each of these features, and then looks at common techniques for solving problems.

The effect of constraints: well-structured versus ill-structured problems

Problems vary in how much information they provide for solving a problem, as well as in how many rules or procedures are needed for a solution. A well-structured problem provides much of the information needed and can in principle be solved using relatively few clearly understood rules. Classic examples are the word problems often taught in math lessons or classes: everything you need to know is contained within the stated problem and the solution procedures are relatively clear and precise. An ill-structured problem has the converse qualities: the information is not necessarily within the problem, solution procedures are potentially quite numerous, and a multiple solutions are likely (Voss, 2006). Extreme examples are problems like “How can the world achieve lasting peace?” or “How can teachers insure that students learn?”

By these definitions, the nine-dot problem is relatively well-structured—though not completely. Most of the information needed for a solution is provided in Scene #1: there are nine dots shown and instructions given to draw four lines. But not all necessary information was given: students needed to consider lines that were longer than implied in the original statement of the problem. Students had to “think outside the box”, as Willem said—in this case, literally.

When a problem is well-structured, so are its solution procedures likely to be as well. A well-defined procedure for solving a particular kind of problem is often called an algorithm; examples are the procedures for multiplying or dividing two numbers or the instructions for using a computer (Leiserson, et al., 2001). Algorithms are only effective when a problem is very well-structured and there is no question about whether the algorithm is an appropriate choice for the problem. In that situation it pretty much guarantees a correct solution. They do not work well, however, with ill-structured problems, where they are ambiguities and questions about how to proceed or even about precisely what the problem is about. In those cases it is more effective to use heuristics, which are general strategies—“rules of thumb”, so to speak—that do not always work, but often do, or that provide at least partial solutions. When beginning research for a term paper, for example, a useful heuristic is to scan the library catalogue for titles that look relevant. There is no guarantee that this strategy will yield the books most needed for the paper, but the strategy works enough of the time to make it worth trying.

<< Chapter < Page Page > Chapter >>

Read also:

OpenStax, Educational psychology. OpenStax CNX. May 11, 2011 Download for free at http://cnx.org/content/col11302/1.2
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.