This page is optimized for mobile devices, if you would prefer the desktop version just click here

1.6 Complex exponentials

From complex sinusoids to complex exponentials

Recall the form of a discrete-time complex sinusoid: $x[n]=e^{j(\omega n + \phi)$. As we have already seen, that signal itself is complex-valued, i.e., it has both a real and an imaginary part. But look closely at just the exponent, and you will see that the exponent itself is purely imaginary.

Suppose we let the exponent be complex-valued, say of the form $a+jb$. Then we have $e^{(a+jb)n}=e^{an}e^{jbn}=(e^a)^n e^{jbn}$. So the result is a complex sinusoid multipled by a real exponential signal (whose base is $e^a$).

Complex exponentials, defined

We do not typically represent complex exponentials in the way derived above, but rather express them in the form $x[n]=z^n$, where $z$ is a complex number. Being a complex number, it lies on the complex plane with a magnitude of $|z|$ and an angle of $\angle z$ we define as $\omega$. So then, if we would like to express $x[n]=z^n$ as a combination of a real exponential and a complex sinusoid, as above, we have: $x[n]=z^n=|z|^n e^{j\omega n}$. Below are some plots of complex exponentials for different values of $z$.
The real and imaginary parts of a complex exponential $x^n$ for which $|z|\lt 1$.
The real and imaginary parts of a complex exponential $x^n$ for which $|z|\gt 1$.

So when the magnitude $|z|$ is greater than 1, we have a signal that oscillates and exponentially grows with time, and if the magnitude is less than 1, it decays over time. And, you guessed it, if the magnitude is exactly equal to 1, it does not grow or decay, but only oscillates. In fact, if the magnitude is 1, the complex exponential is, by definition, simply a complex sinusoid: $|1|^n e^{j\omega n}=e^{j\omega n}$. Therefore you can see that complex sinusoids are a subset of the more general complex exponential signals.

<< Chapter < Page Page > Chapter >>

Read also:

OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.