This page is optimized for mobile devices, if you would prefer the desktop version just click here

19.1 Occurrence, preparation, and properties of transition metals

By the end of this section, you will be able to:
  • Outline the general approach for the isolation of transition metals from natural sources
  • Describe typical physical and chemical properties of the transition metals
  • Identify simple compound classes for transition metals and describe their chemical properties

Transition metals are defined as those elements that have (or readily form) partially filled d orbitals. As shown in [link] , the d -block elements in groups 3–11 are transition elements. The f -block elements , also called inner transition metals (the lanthanides and actinides), also meet this criterion because the d orbital is partially occupied before the f orbitals. The d orbitals fill with the copper family (group 11); for this reason, the next family (group 12) are technically not transition elements. However, the group 12 elements do display some of the same chemical properties and are commonly included in discussions of transition metals. Some chemists do treat the group 12 elements as transition metals.

The transition metals are located in groups 3–11 of the periodic table. The inner transition metals are in the two rows below the body of the table.

The d -block elements are divided into the first transition series    (the elements Sc through Cu), the second transition series    (the elements Y through Ag), and the third transition series    (the element La and the elements Hf through Au). Actinium, Ac, is the first member of the fourth transition series    , which also includes Rf through Rg.

The f -block elements are the elements Ce through Lu, which constitute the lanthanide series    (or lanthanoid series ), and the elements Th through Lr, which constitute the actinide series    (or actinoid series ). Because lanthanum behaves very much like the lanthanide elements, it is considered a lanthanide element, even though its electron configuration makes it the first member of the third transition series. Similarly, the behavior of actinium means it is part of the actinide series, although its electron configuration makes it the first member of the fourth transition series.

Valence electrons in transition metals

Review how to write electron configurations, covered in the chapter on electronic structure and periodic properties of elements. Recall that for the transition and inner transition metals, it is necessary to remove the s electrons before the d or f electrons. Then, for each ion, give the electron configuration:

(a) cerium(III)

(b) lead(II)

(c) Ti 2+

(d) Am 3+

(e) Pd 2+

For the examples that are transition metals, determine to which series they belong.

Solution

For ions, the s -valence electrons are lost prior to the d or f electrons.

(a) Ce 3+ [Xe]4 f 1 ; Ce 3+ is an inner transition element in the lanthanide series.

(b) Pb 2+ [Xe]6 s 2 5 d 10 4 f 14 ; the electrons are lost from the p orbital. This is a main group element.
(c) titanium(II) [Ar]3 d 2 ; first transition series

(d) americium(III) [Rn]5 f 6 ; actinide

(e) palladium(II) [Kr]4 d 8 ; second transition series

Check your learning

Give an example of an ion from the first transition series with no d electrons.

Answer:

V 5+ is one possibility. Other examples include Sc 3+ , Ti 4+ , Cr 6+ , and Mn 7+ .

Got questions? Get instant answers now!
<< Chapter < Page Page > Chapter >>
Terms 15

Read also:

OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.