<< Chapter < Page Chapter >> Page >

Using the fundamental theorem of algebra

Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number of complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial function has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f ( x ) = 0. The Fundamental Theorem of Algebra states that there is at least one complex solution, call it c 1 . By the Factor Theorem, we can write f ( x ) as a product of x c 1 and a polynomial quotient. Since x c 1 is linear, the polynomial quotient will be of degree three. Now we apply the Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call it c 2 . So we can write the polynomial quotient as a product of x c 2 and a new polynomial quotient of degree two. Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them and each one will yield a factor of f ( x ) .

The fundamental theorem of algebra

The Fundamental Theorem of Algebra    states that, if f ( x ) is a polynomial of degree n>0 , then f ( x ) has at least one complex zero.

We can use this theorem to argue that, if f ( x ) is a polynomial of degree n > 0 , and a is a non-zero real number, then f ( x ) has exactly n linear factors

f ( x ) = a ( x c 1 ) ( x c 2 ) ... ( x c n )

where c 1 , c 2 , ... , c n are complex numbers. Therefore, f ( x ) has n roots if we allow for multiplicities.

Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is not necessarily imaginary. Real numbers are also complex numbers.

Finding the zeros of a polynomial function with complex zeros

Find the zeros of f ( x ) = 3 x 3 + 9 x 2 + x + 3.

The Rational Zero Theorem tells us that if p q is a zero of f ( x ) , then p is a factor of 3 and q is a factor of 3.

p q = factor of constant term factor of leading coefficient = factor of 3 factor of 3

The factors of 3 are ±1 and ±3. The possible values for p q , and therefore the possible rational zeros for the function, are ±3 , ±1, and  ± 1 3 . We will use synthetic division to evaluate each possible zero until we find one that gives a remainder of 0. Let’s begin with –3.

Dividing by ( x + 3 ) gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written as

( x + 3 ) ( 3 x 2 + 1 )

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

3 x 2 + 1 = 0 x 2 = 1 3 x = ± 1 3 = ± i 3 3

The zeros of f ( x ) are –3 and ± i 3 3 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the zeros of f ( x ) = 2 x 3 + 5 x 2 11 x + 4.

The zeros are –4,  1 2 ,  and 1 .

Got questions? Get instant answers now!

Using the linear factorization theorem to find polynomials with given zeros

A vital implication of the Fundamental Theorem of Algebra    , as we stated above, is that a polynomial function of degree n will have n zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the polynomial function into n factors. The Linear Factorization Theorem    tells us that a polynomial function will have the same number of factors as its degree, and that each factor will be in the form ( x c ) , where c is a complex number.

Questions & Answers

If c is the cost function for a particular product, find the marginal cost functions and their values at x=10 a. c(x) = 800+ 0.04x + 0.0002x² b. c(x) = 250 + 100x + 0.001x²
Mamush Reply
how can I find set theory
Ephraim Reply
how can I find set theory
Jarvis
is there an error on the one about the dime's thickness? says 2.2x10⁶=0.00135 m
Patrick Reply
hi, interested in algebra
Makan Reply
how to reduce an equation?
Makan
by manipulation of both side
Al
9(y+8)-27 is 9y+45. Why can't you reduce that to y+5? I know that's wrong but can't explain why
Patrick Reply
when you reduce an equation to its simplest terms, you can't change the value of the equation. reducing it to y + 5 is equivalent to dividing it by 9 which changes the value. you can multiply it by 1 or 9/9 which would give 9(y + 5). multiplying it by one does not change the value.
Philip
Given a polynomial expression, factor out the greatest common factor.
Hanu Reply
WHAT IS QUADRATIC EQUATION?
Charles Reply
WHAT IS SYSTEM OF LINEAR INEWUALITIES?
Charles
WHAT IS SYSTEM OF LINEAR INEWUALITIES?
Charles
complex perform
Angel
what is equation?
Charles Reply
what are equations?
Charles
Definition of economics according to karl Marx Thomas malthus Jeremy bentham David Ricardo J.K
Rakiya
Please help me is assignment
Rakiya
The 47th problem of Euclid
Kenneth
show that the set of all natural number form semi group under the composition of addition
Nikhil Reply
what is the meaning
Dominic
explain and give four Example hyperbolic function
Lukman Reply
_3_2_1
felecia
⅗ ⅔½
felecia
_½+⅔-¾
felecia
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
SABAL Reply
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
Pawel
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
Pawel
ok
Ifeanyi
on number 2 question How did you got 2x +2
Ifeanyi
combine like terms. x + x + 2 is same as 2x + 2
Pawel
x*x=2
felecia
2+2x=
felecia
×/×+9+6/1
Debbie
Q2 x+(x+2)+(x+4)=60 3x+6=60 3x+6-6=60-6 3x=54 3x/3=54/3 x=18 :. The numbers are 18,20 and 22
Naagmenkoma
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
Pawel
how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
Abdullahi Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask