<< Chapter < Page Chapter >> Page >

Given the basic exponential growth    equation A = A 0 e k t , doubling time can be found by solving for when the original quantity has doubled, that is, by solving 2 A 0 = A 0 e k t .

The formula is derived as follows:

2 A 0 = A 0 e k t 2 = e k t Divide by  A 0 . ln 2 = k t Take the natural logarithm . t = ln 2 k Divide by the coefficient of  t .

Thus the doubling time is

t = ln 2 k

Finding a function that describes exponential growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is approximately two years. Give a function that describes this behavior.

The formula is derived as follows:

t = ln 2 k The doubling time formula . 2 = ln 2 k Use a doubling time of two years . k = ln 2 2 Multiply by  k  and divide by 2 . A = A 0 e ln 2 2 t Substitute  k  into the continuous growth formula .

The function is A = A 0 e ln 2 2 t .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds. Growth has slowed to a doubling time of approximately three years. Find the new function that takes that longer doubling time into account.

f ( t ) = A 0 e ln 2 3 t

Got questions? Get instant answers now!

Using newton’s law of cooling

Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift    of the generic exponential decay function. This translation leads to Newton’s Law of Cooling    , the scientific formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature

T ( t ) = a e k t + T s

This formula is derived as follows:

T ( t ) = A b c t + T s T ( t ) = A e ln ( b c t ) + T s Laws of logarithms . T ( t ) = A e c t ln b + T s Laws of logarithms . T ( t ) = A e k t + T s Rename the constant  c   ln   b ,  calling it  k .

Newton’s law of cooling

The temperature of an object, T , in surrounding air with temperature T s will behave according to the formula

T ( t ) = A e k t + T s
where
  • t is time
  • A is the difference between the initial temperature of the object and the surroundings
  • k is a constant, the continuous rate of cooling of the object

Given a set of conditions, apply Newton’s Law of Cooling.

  1. Set T s equal to the y -coordinate of the horizontal asymptote (usually the ambient temperature).
  2. Substitute the given values into the continuous growth formula T ( t ) = A e k t + T s to find the parameters A and k .
  3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

Using newton’s law of cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165°F, and is placed into a 35°F refrigerator. After 10 minutes, the cheesecake has cooled to 150°F . If we must wait until the cheesecake has cooled to 70°F before we eat it, how long will we have to wait?

Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially toward 35, following the equation

T ( t ) = A e k t + 35

We know the initial temperature was 165, so T ( 0 ) = 1 6 5 .

165 = A e k 0 + 35 Substitute  ( 0 , 165 ) . A = 130 Solve for  A .

We were given another data point, T ( 1 0 ) = 1 5 0 , which we can use to solve for k .

                150 = 130 e k 10 + 35 Substitute (10, 150) .                 115 = 130 e k 10 Subtract 35 .                115 130 = e 10 k Divide by 130 .           ln ( 115 130 ) = 10 k Take the natural log of both sides .                      k = ln ( 115 130 ) 10 = 0.0123 Divide by the coefficient of  k .

This gives us the equation for the cooling of the cheesecake: T ( t ) = 1 3 0 e 0 . 0 1 2 3 t + 3 5 .

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

70 = 130 e 0.0123 t + 35 Substitute in 70 for  T ( t ) . 35 = 130 e 0.0123 t Subtract 35 . 35 130 = e 0.0123 t Divide by 130 . ln ( 35 130 ) = 0.0123 t Take the natural log of both sides t = ln ( 35 130 ) 0.0123 106.68 Divide by the coefficient of  t .

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70°F .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask