<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Identify a conic in polar form.
  • Graph the polar equations of conics.
  • Define conics in terms of a focus and a directrix.
Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics of the planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being orbited and the distance and direction of the planet or other object from that body. As a result, we tend to use polar coordinates to represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and decrease as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These bodies exhibit either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s gravitational pull and fires off into space. Each of these orbits can be modeled by a conic section in the polar coordinate system.

Identifying a conic in polar form

Any conic may be determined by three characteristics: a single focus , a fixed line called the directrix    , and the ratio of the distances of each to a point on the graph. Consider the parabola     x = 2 + y 2 shown in [link] .

In The Parabola , we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus P ( r , θ ) at the pole, and a line, the directrix, which is perpendicular to the polar axis.

If F is a fixed point, the focus, and D is a fixed line, the directrix, then we can let e be a fixed positive number, called the eccentricity , which we can define as the ratio of the distances from a point on the graph to the focus and the point on the graph to the directrix. Then the set of all points P such that e = P F P D is a conic. In other words, we can define a conic as the set of all points P with the property that the ratio of the distance from P to F to the distance from P to D is equal to the constant e .

For a conic with eccentricity e ,

  • if 0 e < 1 , the conic is an ellipse
  • if e = 1 , the conic is a parabola
  • if e > 1 , the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, x = ± p , the eccentricity e , and the angle θ . Thus, each conic may be written as a polar equation , an equation written in terms of r and θ .

The polar equation for a conic

For a conic with a focus at the origin, if the directrix is x = ± p , where p is a positive real number, and the eccentricity    is a positive real number e , the conic has a polar equation    

r = e p 1 ± e   cos   θ

For a conic with a focus at the origin, if the directrix is y = ± p , where p is a positive real number, and the eccentricity is a positive real number e , the conic has a polar equation

r = e p 1 ± e   sin   θ

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask