<< Chapter < Page Chapter >> Page >

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for x . If equation (2) is multiplied by the opposite of the coefficient of y in equation (1), equation (1) is multiplied by the coefficient of y in equation (2), and we add the two equations, the variable y will be eliminated.

b 2 a 1 x + b 2 b 1 y = b 2 c 1 Multiply  R 1  by  b 2 b 1 a 2 x b 1 b 2 y = b 1 c 2 Multiply  R 2  by b 1 ________________________________________________________   b 2 a 1 x b 1 a 2 x = b 2 c 1 b 1 c 2

Now, solve for x .

b 2 a 1 x b 1 a 2 x = b 2 c 1 b 1 c 2 x ( b 2 a 1 b 1 a 2 ) = b 2 c 1 b 1 c 2                         x = b 2 c 1 b 1 c 2 b 2 a 1 b 1 a 2 = [ c 1 b 1 c 2 b 2 ] [ a 1 b 1 a 2 b 2 ]

Similarly, to solve for y , we will eliminate x .

a 2 a 1 x + a 2 b 1 y = a 2 c 1 Multiply  R 1  by  a 2 a 1 a 2 x a 1 b 2 y = a 1 c 2 Multiply  R 2  by a 1 ________________________________________________________ a 2 b 1 y a 1 b 2 y = a 2 c 1 a 1 c 2

Solving for y gives

a 2 b 1 y a 1 b 2 y = a 2 c 1 a 1 c 2 y ( a 2 b 1 a 1 b 2 ) = a 2 c 1 a 1 c 2                          y = a 2 c 1 a 1 c 2 a 2 b 1 a 1 b 2 = a 1 c 2 a 2 c 1 a 1 b 2 a 2 b 1 = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 |

Notice that the denominator for both x and y is the determinant of the coefficient matrix.

We can use these formulas to solve for x and y , but Cramer’s Rule also introduces new notation:

  • D : determinant of the coefficient matrix
  • D x : determinant of the numerator in the solution of x
    x = D x D
  • D y : determinant of the numerator in the solution of y
    y = D y D

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the determinants. We can then express x and y as a quotient of two determinants.

Cramer’s rule for 2×2 systems

Cramer’s Rule    is a method that uses determinants to solve systems of equations that have the same number of equations as variables.

Consider a system of two linear equations in two variables.

a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2

The solution using Cramer’s Rule is given as

x = D x D = | c 1 b 1 c 2 b 2 | | a 1 b 1 a 2 b 2 | , D 0 ; y = D y D = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 | , D 0.

If we are solving for x , the x column is replaced with the constant column. If we are solving for y , the y column is replaced with the constant column.

Using cramer’s rule to solve a 2 × 2 system

Solve the following 2   ×   2 system using Cramer’s Rule.

12 x + 3 y = 15    2 x 3 y = 13

Solve for x .

x = D x D = | 15 3 13 3 | | 12 3 2 3 | = 45 39 36 6 = 84 42 = 2

Solve for y .

y = D y D = | 12 15 2 13 | | 12 3 2 3 | = 156 30 36 6 = 126 42 = −3

The solution is ( 2 , −3 ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use Cramer’s Rule to solve the 2 × 2 system of equations.

   x + 2 y = −11 2 x + y = −13

( 3 , 7 )

Got questions? Get instant answers now!

Evaluating the determinant of a 3 × 3 matrix

Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is more complicated. One method is to augment the 3×3 matrix with a repetition of the first two columns, giving a 3×5 matrix. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper right). This is more easily understood with a visual and an example.

Find the determinant    of the 3×3 matrix.

A = [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ]
  1. Augment A with the first two columns.
    det ( A ) = | a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 | a 1 a 2 a 3 b 1 b 2 b 3 |
  2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries down the second diagonal. Add this result to the product of the entries down the third diagonal.
  3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the product of entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask