<< Chapter < Page Chapter >> Page >

Finding increasing and decreasing intervals on a graph

Given the function p ( t ) in [link] , identify the intervals on which the function appears to be increasing.

Graph of a polynomial.

We see that the function is not constant on any interval. The function is increasing where it slants upward as we move to the right and decreasing where it slants downward as we move to the right. The function appears to be increasing from t = 1 to t = 3 and from t = 4 on.

In interval notation    , we would say the function appears to be increasing on the interval (1,3) and the interval ( 4 , ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding local extrema from a graph

Graph the function f ( x ) = 2 x + x 3 . Then use the graph to estimate the local extrema of the function and to determine the intervals on which the function is increasing.

Using technology, we find that the graph of the function looks like that in [link] . It appears there is a low point, or local minimum, between x = 2 and x = 3 , and a mirror-image high point, or local maximum, somewhere between x = −3 and x = −2.

Graph of a reciprocal function.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph the function f ( x ) = x 3 6 x 2 15 x + 20 to estimate the local extrema of the function. Use these to determine the intervals on which the function is increasing and decreasing.

The local maximum appears to occur at ( 1 , 28 ) , and the local minimum occurs at ( 5 , 80 ) . The function is increasing on ( , 1 ) ( 5 , ) and decreasing on ( 1 , 5 ) .

Graph of a polynomial with a local maximum at (-1, 28) and local minimum at (5, -80).
Got questions? Get instant answers now!

Finding local maxima and minima from a graph

For the function f whose graph is shown in [link] , find all local maxima and minima.

Graph of a polynomial.

Observe the graph of f . The graph attains a local maximum at x = 1 because it is the highest point in an open interval around x = 1. The local maximum is the y -coordinate at x = 1 , which is 2.

The graph attains a local minimum at   x = −1   because it is the lowest point in an open interval around x = −1. The local minimum is the y -coordinate at x = −1 , which is −2.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Analyzing the toolkit functions for increasing or decreasing intervals

We will now return to our toolkit functions and discuss their graphical behavior in [link] , [link] , and [link] .

Table showing the increasing and decreasing intervals of the toolkit functions.
Table showing the increasing and decreasing intervals of the toolkit functions.
Table showing the increasing and decreasing intervals of the toolkit functions.

Use a graph to locate the absolute maximum and absolute minimum

There is a difference between locating the highest and lowest points on a graph in a region around an open interval (locally) and locating the highest and lowest points on the graph for the entire domain. The y - coordinates (output) at the highest and lowest points are called the absolute maximum and absolute minimum , respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph attains it highest and lowest points on the domain of the function. See [link] .

Graph of a segment of a parabola with an absolute minimum at (0, -2) and absolute maximum at (2, 2).

Not every function has an absolute maximum or minimum value. The toolkit function f ( x ) = x 3 is one such function.

Absolute maxima and minima

The absolute maximum    of f at x = c is f ( c ) where f ( c ) f ( x ) for all x in the domain of f .

The absolute minimum    of f at x = d is f ( d ) where f ( d ) f ( x ) for all x in the domain of f .

Finding absolute maxima and minima from a graph

For the function f shown in [link] , find all absolute maxima and minima.

Graph of a polynomial.

Observe the graph of f . The graph attains an absolute maximum in two locations, x = −2 and x = 2 , because at these locations, the graph attains its highest point on the domain of the function. The absolute maximum is the y -coordinate at x = −2 and x = 2 , which is 16.

The graph attains an absolute minimum at x = 3 , because it is the lowest point on the domain of the function’s graph. The absolute minimum is the y -coordinate at x = 3 , which is −10.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask