<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a shortcut that will allow us to find ( x + y ) n without multiplying the binomial by itself n times.

Identifying binomial coefficients

In Counting Principles , we studied combinations . In the shortcut to finding ( x + y ) n , we will need to use combinations to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation ( n r ) instead of C ( n , r ) , but it can be calculated in the same way. So

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

The combination ( n r ) is called a binomial coefficient . An example of a binomial coefficient is ( 5 2 ) = C ( 5 , 2 ) = 10.

Binomial coefficients

If n and r are integers greater than or equal to 0 with n r , then the binomial coefficient    is

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a whole number.

Finding binomial coefficients

Find each binomial coefficient.

  1. ( 5 3 )
  2. ( 9 2 )
  3. ( 9 7 )

Use the formula to calculate each binomial coefficient. You can also use the n C r function on your calculator.

( n r ) = C ( n , r ) = n ! r ! ( n r ) !
  1. ( 5 3 ) = 5 ! 3 ! ( 5 3 ) ! = 5 4 3 ! 3 ! 2 ! = 10
  2. ( 9 2 ) = 9 ! 2 ! ( 9 2 ) ! = 9 8 7 ! 2 ! 7 ! = 36
  3. ( 9 7 ) = 9 ! 7 ! ( 9 7 ) ! = 9 8 7 ! 7 ! 2 ! = 36
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find each binomial coefficient.

  1. ( 7 3 )
  2. ( 11 4 )

  1. 35
  2. 330

Got questions? Get instant answers now!

Using the binomial theorem

When we expand ( x + y ) n by multiplying, the result is called a binomial expansion    , and it includes binomial coefficients. If we wanted to expand ( x + y ) 52 , we might multiply ( x + y ) by itself fifty-two times. This could take hours! If we examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more complicated binomial expansions.

( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

First, let’s examine the exponents. With each successive term, the exponent for x decreases and the exponent for y increases. The sum of the two exponents is n for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The coefficients follow a pattern:

( n 0 ) , ( n 1 ) , ( n 2 ) , ... , ( n n ) .

These patterns lead us to the Binomial Theorem , which can be used to expand any binomial.

( x + y ) n = k = 0 n ( n k ) x n k y k = x n + ( n 1 ) x n 1 y + ( n 2 ) x n 2 y 2 + ... + ( n n 1 ) x y n 1 + y n

Another way to see the coefficients is to examine the expansion of a binomial in general form, x + y , to successive powers 1, 2, 3, and 4.

( x + y ) 1 = x + y ( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

Can you guess the next expansion for the binomial ( x + y ) 5 ?

Graph of the function f_2.

See [link] , which illustrates the following:

  • There are n + 1 terms in the expansion of ( x + y ) n .
  • The degree (or sum of the exponents) for each term is n .
  • The powers on x begin with n and decrease to 0.
  • The powers on y begin with 0 and increase to n .
  • The coefficients are symmetric.

To determine the expansion on ( x + y ) 5 , we see n = 5 , thus, there will be 5+1 = 6 terms. Each term has a combined degree of 5. In descending order for powers of x , the pattern is as follows:

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask