<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Identify a conic in polar form.
  • Graph the polar equations of conics.
  • Define conics in terms of a focus and a directrix.
Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics of the planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being orbited and the distance and direction of the planet or other object from that body. As a result, we tend to use polar coordinates to represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and decrease as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These bodies exhibit either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s gravitational pull and fires off into space. Each of these orbits can be modeled by a conic section in the polar coordinate system.

Identifying a conic in polar form

Any conic may be determined by three characteristics: a single focus , a fixed line called the directrix    , and the ratio of the distances of each to a point on the graph. Consider the parabola     x = 2 + y 2 shown in [link] .

In The Parabola , we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus P ( r , θ ) at the pole, and a line, the directrix, which is perpendicular to the polar axis.

If F is a fixed point, the focus, and D is a fixed line, the directrix, then we can let e be a fixed positive number, called the eccentricity , which we can define as the ratio of the distances from a point on the graph to the focus and the point on the graph to the directrix. Then the set of all points P such that e = P F P D is a conic. In other words, we can define a conic as the set of all points P with the property that the ratio of the distance from P to F to the distance from P to D is equal to the constant e .

For a conic with eccentricity e ,

  • if 0 e < 1 , the conic is an ellipse
  • if e = 1 , the conic is a parabola
  • if e > 1 , the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, x = ± p , the eccentricity e , and the angle θ . Thus, each conic may be written as a polar equation , an equation written in terms of r and θ .

The polar equation for a conic

For a conic with a focus at the origin, if the directrix is x = ± p , where p is a positive real number, and the eccentricity    is a positive real number e , the conic has a polar equation    

r = e p 1 ± e   cos   θ

For a conic with a focus at the origin, if the directrix is y = ± p , where p is a positive real number, and the eccentricity is a positive real number e , the conic has a polar equation

r = e p 1 ± e   sin   θ

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask