<< Chapter < Page Chapter >> Page >

X-ray photoelectron spectroscopy (xps)

XPS confirms the presence of different elements in functionalized SWNTs. This is useful for identification of heteroatom elements such as F and N, and then XPS can be used for quantification with simple substituent groups and used indirectly. Deconvolution of XPS is useful to study fine structures on SWNTs. However, the overlapping of binding energies in the spectrum complicates quantification.

Spectroscopy

Raman spectroscopy

Raman spectroscopy is very informative and important for characterizing functionalized SWNTs. The tangential G mode ( ca . 1550 – 1600 cm -1 ) is characteristic of sp 2 carbons on the hexagonal graphene network. The D-band, so-called disorder mode (found at ca . 1295 cm -1 ) appears due to disruption of the hexagonal sp 2 network of SWNTs. The D-band was largely used to characterize functionalized SWNTs and ensure functionalization is covalent and occurred at the sidewalls. However, the observation of D band in Raman can also be related to presence of defects such as vacancies, 5-7 pairs, or dopants. Thus, using Raman to provide evidence of covalent functionalization needs to be done with caution. In particular, the use of Raman spectroscopy for a determination of the degree of functionalization is not reliable.

It has been shown that quantification with Raman is complicated by the distribution of functional groups on the sidewall of SWNTs. For example, if fluorinated-SWNTs (F-SWNTs) are functionalized with thiol or thiophene terminated moieties, TGA shows that they have similar level of functionalization. However, their relative intensities of D:G in Raman spectrum are quite different. The use of sulfur substituents allow for gold nanoparticles with 5 nm in diameter to be attached as a “chemical marker” for direct imaging of the distribution of functional groups. AFM and STM suggest that the functional groups of thio-SWNTs are group together while the thiophene groups are widely distributed on the sidewall of SWNTs. Thus the difference is not due to significant difference in substituent concentration but on substituent distribution, while Raman shows different D:G ratio.

Infra red spectroscopy

IR spectroscopy is useful in characterizing functional groups bound to SWNTs. A variety of organic functional groups on sidewall of SWNTs have been identified by IR, such as COOH(R), -CH 2 , -CH 3 , -NH 2 , -OH, etc. However, it is difficult to get direct functionalization information from IR spectroscopy. The C-F group has been identified by IR in F-SWNTs. However, C-C, C-N, C-O groups associated with the side-wall functionalization have not been observed in the appropriately functionalized SWNTs.

Uv/visible spectroscopy

UV/visible spectroscopy is maybe the most accessible technique that provides information about the electronic states of SWNTs, and hence functionalization. The absorption spectrum shows bands at ca . 1400 nm and 1800 nm for pristine SWNTs. A complete loss of such structure is observed after chemical alteration of SWNTs sidewalls. However, such information is not quantitative and also does not show what type of functional moiety is on the sidewall of SWNTs.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask