<< Chapter < Page Chapter >> Page >

Another method, mass spectrometry, has certain advantages over other techniques. Mass spectra could be obtained rapidly; only small amount (sub-μg) of sample is required for analysis, and the data provided by the spectra is very informative of the molecular structure. Mass spectrometry also has strong advantages of specificity and sensitivity compared with other detectors. The combination of HPLC-MS is oriented towards the specific detection and potential identification of chemicals in the presence of other chemicals. However, it is difficult to interface the liquid chromatography to a mass-spectrometer, because all the solvents need to be removed first. The common used interface includes electrospray ionization, atmospheric pressure photoionization, and thermospray ionization.

Flow rate

Flow rate shows how fast the mobile phase travels across the column, and is often used for calculation of the consumption of the mobile phase in a given time interval. There are volumetric flow rate U and linear flow rate u. These two flow rate is related by [link] , where A is the area of the channel for the flow, [link] .

Retention time

The retention time (t R ) can be defined as the time from the injection of the sample to the time of compound elution, and it is taken at the apex of the peak that belongs to the specific molecular species. The retention time is decided by several factors including the structure of the specific molecule, the flow rate of the mobile phase, column dimension. And the dead time t 0 is defined as the time for a non-retained molecular species to elute from the column.

Retention volume

Retention volume (V R ) is defined as the volume of the mobile phase flowing from the injection time until the corresponding retention time of a molecular species, and are related by [link] . The retention volume related to the dead time is known as dead volume V 0 .

Migration rate

The migration rate can be defined as the velocity at which the species moves through the column. And the migration rate (U R ) is inversely proportional to the retention times. If only a fraction of molecules that are present in the mobile phase are moving. The value of migration rate is then given by [link] .

Capacity factor

Capacity factor (k) is the ratio of reduced retention time and the dead time, [link] .

Equilibrium constant and phase ratio

In the separation, the molecules running through the column can also be considered as being in a continuous equilibrium between the mobile phase and the stationary phase. This equilibrium could be governed by an equilibrium constant K, defined as [link] , in which C mo is the molar concentration of the molecules in the mobile phase, and C st is the molar concentration of the molecules in the stationary phase. The equilibrium constant K can also be written as [link] .

Advantage of hplc

The most important aspect of HPLC is the high separation capacity which enables the batch analysis of multiple components. Even if the sample consists of a mixture, HPLC will allows the target components to be separated, detected, and quantified. Also, under appropriate condition, it is possible to attain a high level of reproducibility with a coefficient of variation not exceeding 1%. Also, it has a high sensitivity while a low sample consumption. HPLC has one advantage over GC column that analysis is possible for any sample can be stably dissolved in the eluent and need not to be vaporized.With this reason, HPLC is used much more frequently in the field of biochemistry and pharmaceutical than the GC column.

Bibliography

  • M. Serban and V. David, Essentials in Modern HPLC Separation , Elsevier, Waltham, 2013.
  • S. Fanali, P. Hadded, C. Poole, P. Schoenmakers, and D. Lloyd, liquid chromatography fundamentals and instrumentation, Elsevier, Burlington, 2013.
  • L. R. Snyder and J. J. Kirkland, introduction for modern liquid chromatography , Wily, New Jersey, 2010.
  • R. P. W. Scott Liquid Chromatography Detectors , Elsevier, New York, 1986
  • P. W. Scott, Liquid Chromatography for the Analyst , Marcel Dekker, New York, 1994
  • G. Schwedt, Chromatographia , 1979, 12 , 613.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask