<< Chapter < Page Chapter >> Page >

Filter the sample solution by using a Pasteur pipette stuffed with a piece of cotton wool at the neck. Any suspended material like dust can cause changes in the spectrum. When working with dilute aqueous solutions, sweat itself can have a major effect and so gloves are recommended at all times.

Sweat contains mainly water, minerals (sodium 0.9 g/L, potassium 0.2 g/L, calcium 0.015 g/L, magnesium 0.0013 g/L and other trace elements like iron, nickel, zinc, copper, lead and chromium), as well as lactate and urea. In presence of a dilute solution of the sample, the proton-containing substances in sweat (e.g., lactate and urea) can result in a large signal that can mask the signal of the sample.

The NMR probe is the most critical piece of equipment as it contains the apparatus that must detect the small NMR signals from the sample without adding a lot of noise. The size of the probe is given by the diameter of the NMR tube it can accommodate with common sizes 5, 10 and 15 mm. A larger size probe can be used in the case of less sensitive samples in order to get as much solute into the active zone as possible. When the sample is available in less quantity, use a smaller size tube to get an intrinsically higher sensitivity.

Nmr analysis

A result sheet of T 2 ­ relaxation has the plot of magnetization versus time, which will be linear in a semi-log plot as shown in [link] . Fitting it to the equation, we can find T­ 2 and thus one can prepare a calibration plot of 1/T 2 versus S/V of known samples.

Example of T 2 relaxation with magnetization versus time on a semi-log plot.

Limitations of the t 2 Technique

The following are a few of the limitations of the T 2 technique:

  • One can’t always guarantee no magnetic field gradients, in which case the T 1 relaxation technique is to be used. However this takes much longer to perform than the T 2 relaxation.
  • There is the requirement of the odd number of nucleons in the sample or solvent.
  • The solid suspension should not have any para- or ferromagnetic substance (for instance, organics like hexane tend to have dissolved O 2 which is paramagnetic).
  • The need to prepare a calibration chart of the material with known specific surface area.

Example of usage

A study of colloidal silica dispersed in water provides a useful example. [link] shows a representation of an individual silica particle.

A representation of the silica particle with a thin water film surrounding it.

A series of dispersion in DI water at different concentrations was made and surface area calculated. The T 2 relaxation technique was performed on all of them with a typical T 2 plot shown in [link] and T 2 was recorded at 2117 milliseconds for this sample.

T 2 measurement for 2.3 wt% silica in DI water.

A calibration plot was prepared with 1/T 2 – 1/T 2,bulk as ordinate (the y -axis coordinate) and S/V as abscissa (the x -axis coordinate). This is called the surface relaxivity plot and is illustrated in [link] .

Calibration plot of (1/T 2 – 1/T 2,Bulk ) versus specific surface area for silica in DI water.

Accordingly for the colloidal dispersion of silica in DI water, the best fit resulted in [link] , from which one can see that the value of surface relaxivity, 2.3 x 10 -8 , is in close accordance with values reported in literature.

1 T 2 1 T 2, bulk = 2 . 3 x 1 0 8 ( S V ) 0 . 0051 size 12{ { {1} over {T rSub { size 8{2} } } } ` - `` { {1} over {T rSub { size 8{2, ital "bulk"} } } } =2 "." 3`x`1`0 rSup { size 8{ - 8} } \( { {S} over {V} } \) ` - `0 "." "0051"} {}

The T 2 technique has been used to find the pore-size distribution of water-wet rocks. Information of the pore size distribution helps petroleum engineers model the permeability of rocks from the same area and hence determine the extractable content of fluid within the rocks.

Usage of NMR for surface area determination has begun to take shape with a company, Xigo nanotools, having developed an instrument called the Acorn Area TM to get surface area of a suspension of aluminum oxide. The results obtained from the instrument match closely with results reported by other techniques in literature. Thus the T 2 NMR technique has been presented as a strong case to obtain specific surface areas of nanoparticle suspensions.

Bibliography

  • G. R Coates, L. Xiao, and M.G. Prammer, NMR Logging: Principles&Applications , Halliburton Energy Services, Houston (2001).
  • B. Cowan, Nuclear magnetic resonance and relaxation , Cambridge University Press, Cambridge UK (2001).
  • W. E. Kenyon, The Log Analyst , 1997, 6 , 2.
  • A. E. Derome, Modern NMR Techniques for Chemistry Research , Vol 6, Pergamon Press, Oxford (1988).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask