<< Chapter < Page Chapter >> Page >

Size exclusion chromatography

It is a chromatographic method that separate the molecules in the solutions based on the size (hydrodynamic volume). This column is often used for the separation of macromolecules and of macromolecules from small molecules. After the analyte is injected into the column, molecules smaller than he pore size of the stationary phase enter the porous particles during the separation and flow through he intricate channels of the stationary phase. Thus smaller components have a longer path to traverse and elute from the column later than the larger ones. Since the molecular volume is related to molecular weight, it is expected that retention volume will depend to some degree on the molecular weight of the polymeric materials. The relation between the retention time and the molecular weight is shown in [link] .

Graph showing the relationship between the retention time and molecular weight in size exclusion chromatography.

Usually the type of HPLC separation method to use depends on the chemical nature and physicochemical parameters of the samples. [link] shows a flow chart of preliminary selection for the separation method according to the properties of the analyte.

Diagram showing the sample properties related to the selection of HPLC type of analysis.

Detectors

Detectors that are commonly used for liquid chromatography include ultraviolet-visible absorbance detectors, refractive index detectors, fluorescence detectors, and mass spectrometry. Regardless of the class, a LC detector should ideally have the characteristics of about 10 -12 -10 -11 g/mL, and a linear dynamic range of five or six orders. The principal characteristics of the detectors to be evaluated include dynamic range, response index or linearity, linear dynamic range, detector response, detector sensitivity, etc.

Among these detectors, the most economical and popular methods are UV and refractive index (RI) detectors. They have rather broad selectivity reasonable detection limits most of the time. The RI detector was the first detector available for commercial use. This method is particularly useful in the HPLC separation according to size, and the measurement is directly proportional to the concentration of polymer and practically independent of the molecular weight. The sensitivity of RI is 10 -6 g/mL, the linear dynamic range is from 10 -6 to 10 -4 g/mL, and the response index is between 0.97 and 1.03.

UV detectors respond only to those substances that absorb UV light at the wavelength of the source light. A great many compounds absorb light in the UV range (180-350 nm) including substances having one or more double bonds and substances having unshared electrons. and the relationship between the intensity of UV light transmitted through the cell and solute concentration is given by Beer’s law, [link] and [link] .

Where I 0 is the intensity of the light entering the cell, and I T is the light transmitted through the cell, l is the path length of the cell, c is the concentration of the solute, and k is the molar absorption coefficient of the solute. UV detectors include fixed wavelength UV detector and multi wavelength UV detector. The fixed wavelength UV detector has sensitivity of 5*10 -8 g/mL, has linear dynamic range between 5*10 -8 and 5* 10-4 g/mL, and the response index is between 0.98 and 1.02. The multi-wavelength UV detector has sensitivity of 10 -7 g/mL, the linear dynamic range is between 5*10 -7 and 5*10 -4 g/mL, and the response index is from 0.97 to 1.03. UV detectors could be used effectively for the reverse-phase separations and ion exchange chromatography. UV detectors have high sensitivity, are economically affordable, and easy to operate. Thus UV detector is the most common choice of detector for HPLC.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask