<< Chapter < Page Chapter >> Page >

Column selection

[link] shows commonly used stationary phase in various applications.

Some common stationary phases for gas-liquid chromatography. Adapted from http://www.cem.msu.edu/~cem333/Week15.pdf
Stationary phase Common trade name Maximum temperature (°C) Common applications
Polydimethyl siloxane OV-1, SE-30 350 General-purpose nonpolar phase, hydrocarbons, polynuclear aromatics, drugs, steroids, PCBs
Poly(phenylmethyl-dimethyl) siloxane (10% phenyl) OV-3, SE-52 350 Fatty acid methyl esters, alkaloids, drugs, halogenated compounds
Poly(phenylmethyl) siloxane (50% phenyl) OV-17 250 Drugs, steroids, pesticides, glycols
Poly(trifluoropropyl-dimethyl) siloxane OV-210 200 Chlorinated aromatics, nitroaromatics, alkyl-substituted benzenes
Polyethylene glycol Carbowax 20M 250 Free acids, alcohols, ethers, essential oils, glycols
Poly(dicyanoallyldimethyl) siloxane OV-275 240 Polyunsaturated fatty acid, rosin acids, free acids, alcohols

Column temperature and temperature program

For precise work, the column temperature must be controlled to within tenths of a degree. The optimum column temperature is dependent upon the boiling point of the sample. As a rule of thumb, a temperature slightly above the average boiling point of the sample results in an elution time of 2 - 30 minutes. Minimal temperatures give good resolution, but increase elution times. If a sample has a wide boiling range, then temperature programming can be useful. The column temperature is increased (either continuously or in steps) as separation proceeds. Another effect that temperature may have is on the shape of peak as flow rate does. The higher the temperature is, the more intensive the diffusion is, the worse the shape is. Thus, a compromise has to be made between goodness of separation and retention time as well as peak shape.

Detector selection

A number of detectors are used in gas chromatography. The most common are the flame ionization detector (FID) and the thermal conductivity detector (TCD). Both are sensitive to a wide range of components, and both work over a wide range of concentrations. While TCDs are essentially universal and can be used to detect any component other than the carrier gas (as long as their thermal conductivities are different from that of the carrier gas, at detector temperature), FIDs are sensitive primarily to hydrocarbons, and are more sensitive to them than TCD. However, an FID cannot detect water. Both detectors are also quite robust. Since TCD is non-destructive, it can be operated in-series before an FID (destructive), thus providing complementary detection of the same analytes.For halides, nitrates, nitriles, peroxides, anhydrides and organometallics, ECD is a very sensitive detection, which can detect up to 50 fg of those analytes. Different types of detectors are listed below in [link] , along with their properties.

Different types of detectors and their properties. Adapted from http://teaching.shu.ac.uk/hwb/chemistry/tutorials/chrom/gaschrm.htm
Detector Type Support gases Selectivity Detectability Dynamic range
Flame ionization (FID) Mass flow Mass flow Most organic compounds 100 pg 10 7
Thermal conductivity (TCD) Concentration Reference Universal 1 ng 10 7
Electron capture (ECD) Concentration Make-up Halides, nitrates, nitriles, peroxides, anhydrides, organometallics 50 fg 10 5
Nitrogen-phosphorus Mass flow Hydrogen and air Nitrogen, phosphorus 10 pg 10 6
Flame photometric (FPD) Mass flow Hydrogen and air possibly oxygen Sulphur, phosphorus, tin, boron, arsenic, germanium, selenium, chromium 100 pg 10 3
Photo-ionization (PID) Concentration Make-up Aliphatics, aromatics, ketones, esters, aldehydes, amines, heterocyclics, organosulphurs, some organometallics 2 pg 10 7
Hall electrolytic conductivity Mass flow Hydrogen, oxygen Halide, nitrogen, nitrosamine, sulphur - -

Headspace analysis using gc

Most consumer products and biological samples are composed of a wide variety of compounds that differ in molecular weight, polarity, and volatility. For complex samples like these, headspace sampling is the fastest and cleanest method for analyzing volatile organic compounds. A headspace sample is normally prepared in a vial containing the sample, the dilution solvent, a matrix modifier, and the headspace ( [link] ). Volatile components from complex sample mixtures can be extracted from non-volatile sample components and isolated in the headspace or vapor portion of a sample vial. An aliquot of the vapor in the headspace is delivered to a GC system for separation of all of the volatile components.

Schematic representation of the phases of the headspace in the vial. Adapted from A Technical Guide for Static Headspace Analysis Using GC , Restek Corp. (2000).

The gas phase (G in [link] ) is commonly referred to as the headspace and lies above the condensed sample phase. The sample phase (S in [link] ) contains the compound(s) of interest and is usually in the form of a liquid or solid in combination with a dilution solvent or a matrix modifier. Once the sample phase is introduced into the vial and the vial is sealed, volatile components diffuse into the gas phase until the headspace has reached a state of equilibrium as depicted by the arrows. The sample is then taken from the headspace.

Basic principles of headspace analysis

Partition coefficient

Samples must be prepared to maximize the concentration of the volatile components in the headspace, and minimize unwanted contamination from other compounds in the sample matrix. To help determine the concentration of an analyte in the headspace, you will need to calculate the partition coefficient (K), which is defined by [link] , where C s is the concentration of analyte in sample phase and C g is the concentration of analyte in gas phase. Compounds that have low K values will tend to partition more readily into the gas phase, and have relatively high responses and low limits of detection. K can be lowered by changing the temperature at which the vial is equilibrated or by changing the composition of the sample matrix.

Phase ratio

The phase ratio (β) is defined as the relative volume of the headspace compared to volume of the sample in the sample vial, [link] , where V s =volume of sample phase and V g =volume of gas phase. Lower values for β (i.e., larger sample size) will yield higher responses for volatile compounds. However, decreasing the β value will not always yield the increase in response needed to improve sensitivity. When β is decreased by increasing the sample size, compounds with high K values partition less into the headspace compared to compounds with low K values, and yield correspondingly smaller changes in C g . Samples that contain compounds with high K values need to be optimized to provide the lowest K value before changes are made in the phase ratio.

Bibliography

  • D. L, Pavia, G. M. Lampman, G. S. Kritz, and R. G. Engel, Introduction to Organic Laboratory Techniques , 4 th ed. Thomson Brooks/Cole (2006).
  • D. C. Harris, Quantitative Chemical Analysis , 5 th ed., Freeman and Company (1999).
  • M. O. Nutt, J. B. Hughes, and M. S. Wong, Environ. Sci. Technol. , 2005, 39 , 1346.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask