<< Chapter < Page Chapter >> Page >

Introduction

Low energy electron diffraction (LEED) is a very powerful technique that allows for the characterization of the surface of materials. Its high surface sensitivity is due to the use of electrons with energies between 20-200 eV, which have wavelengths equal to 2.7 – 0.87 Å (comparable to the atomic spacing). Therefore, the electrons can be elastically scattered easily by the atoms in the first few layers of the sample. Its features, such as little penetration of low–energy electrons have positioned it as one of the most common techniques in surface science for the determination of the symmetry of the unit cell (qualitative analysis) and the position of the atoms in the crystal surface (quantitative analysis).

History: Davisson and Germer experiment

In 1924 Louis de Brogile postulated that all forms of matter, such as electrons, have a wave-particle nature. Three years later after this postulate, the American physicists Clinton J. Davisson and Lester H. Germer ( [link] ) proved experimentally the wave nature of electrons at Bell Labs in New York, see Figure 1. At that time, they were investigating the distribution-in-angle of the elastically scattered electrons (electrons that have suffered no loss of kinetic energy) from the (111) face of a polycrystalline nickel, material composed of many randomly oriented crystals.

Davisson and Germer
Clinton Davisson (right) and Lester Germer (left) in their laboratory, where they proved that electrons could act like waves in 1927. Author unknown, public domain.

The experiment consisted of a beam of electrons from a heated tungsten filament directed against the polycrystalline nickel and an electron detector, which was mounted on an arc to observe the electrons at different angles. During the experiment, air entered in the vacuum chamber where the nickel was, producing an oxide layer on its surface. Davisson and Clinton reduced the nickel by heating it at high temperature. They did not realize that the thermal treatment changed the polycrystalline nickel to a nearly monocrystalline nickel, material composed of many oriented crystals. When they repeated the experiment, it was a great surprise that the distribution-in-angle of the scattered electrons manifested sharp peaks at certain angles. They soon realized that these peaks were interference patterns, and, in analogy to X-ray diffraction, the arrangement of atoms and not the structure of the atoms was responsible for the pattern of the scattered electrons.

The results of Davisson and Germer were soon corroborated by George Paget Thomson, J. J. Thomson’s son. In 1937, both Davisson and Thomson were awarded with the Nobel Prize in Physics for their experimental discovery of the electron diffraction by crystals. It is noteworthy that 31 years after J. J. Thomson showed that the electron is a particle, his son showed that it is also a wave.

Although the discovery of low-energy electron diffraction was in 1927, it became popular in the early 1960’s, when the advances in electronics and ultra-high vacuum technology made possible the commercial availability of LEED instruments. At the beginning, this technique was only used for qualitative characterization of surface ordering. Years later, the impact of computational technologies allowed the use of LEED for quantitative analysis of the position of atoms within a surface. This information is hidden in the energetic dependence of the diffraction spot intensities, which can be used to construct a LEED I-V curve.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask