<< Chapter < Page Chapter >> Page >

Oven

The oven, as referenced before, exists to heat the mobile phase to its desired temperature. In the case of SFC, the desired temperature is always the critical temperature of the supercritical fluid. These ovens are precisely controlled and standard across SFC, HPLC, and GC.

Restrictor

As suggested by its name, the restrictor aims to restrict the flow through the columns. In altering the flow, the speed at which the sample elutes, the resolution at which it elutes, and the properties of the supercritical fluid can be altered, thus allowing for each SFC column to be tailored to the sample in question.

Detector

So far, there has been one largely overlooked component of the SFC machine: the detector. Technically not a part of the chromatographic separation process, the detector still plays an important role: identifying the components of the solution. While the SFC aims to separate components with good resolution (high purity, no other components mixed in), the detector aims to define what each of these components is made of.

The two detectors most often found on SFC instruments are either flame ionization detectors (FID) or mass spectrometers (MS):

  • FIDs operate through ionizing the sample in a hydrogen-powered flame. By doing so, they produce charged particles, which hit electrodes, and the particles are subsequently quantified and identified.
  • MS operates through creating an ionized spray of the sample, and then separating the ions based on a mass/charge ratio. The mass/charge ratio is plotted against ion abundance and creates a “fingerprint” for the chemical identified. This chemical fingerprint is then matched against a database to isolate which compound it was. This can be done for each unique elution, rendering the SFC even more useful than if it were standing alone.

Sample

Generally speaking, samples need little preparation. The only major requirement is that it dissolves in a solvent less polar than methanol: it must have a dielectric constant lower than 33, since CO 2 has a low polarity and cannot easily elute polar samples. To combat this, modifiers are added to the mobile phase.

Stationary phase

The stationary phase is a neutral compound that acts as a source of “friction” for certain molecules in the sample as they slide through the column. Silica attracts polar molecules and thus the molecules attach strongly, holding until enough of the mobile phase has passed through to attract them away. The combination of the properties in the stationary phase and the mobile phase help determine the resolution and speed of the experiment.

Mobile phase

The mobile phase (the supercritical fluid) pushes the sample through the column and elutes separate, pure, samples. This is where the supercritical fluid’s properties of high density, high diffusivity, and low viscosity come into play. With these three properties, the mobile phase is able to adequately interact with the sample, quickly push through it, and strongly plow through the sample to separate it out. The mobile phase also partly determines how it separates out: it will first carry out similar molecules, ones with similar polarities, and follow gradually with molecules with larger polarities.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask