<< Chapter < Page Chapter >> Page >

Columns

Different separation mechanisms were used based on different property of the stationary phase of the column. The major types include normal phase chromatography, reverse phase chromatography, ion exchange, size exclusion chromatography, and affinity chromatography.

Normal-phase chromatography

In this method the columns are packed with polar, inorganic particles and a nonpolar mobile phase is used to run through the stationary phase ( [link] ). Normal phase chromatography is mainly used for purification of crude samples, separation of very polar samples, or analytical separations by thin layer chromatography. One problem when using this method is that, water is a strong solvent for the normal-phase chromatography, traces of water in the mobile phase can markedly affect sample retention, and after changing the mobile phase, the column equilibration is very slow.

Mobile phase and stationary phase used for normal phase and reverse-phase chromatography
Stationary phase Mobile phase
Normal phase Polar Non polar
Reverse phase Non polar Polar

Reverse-phase chromatography

In reverse-phase (RP) chromatography the stationary phase has a hydrophobic character, while the mobile phase has a polar character. This is the reverse of the normal-phase chromatography ( [link] ). The interactions in RP-HPLC are considered to be the hydrophobic forces, and these forces are caused by the energies resulting from the disturbance of the dipolar structure of the solvent. The separation is typically based on the partition of the analyte between the stationary phase and the mobile phase. The solute molecules are in equilibrium between the hydrophobic stationary phase and partially polar mobile phase. The more hydrophobic molecule has a longer retention time while the ionized organic compounds, inorganic ions and polar metal molecules show little or no retention time.

Ion exchange chromatography

The ion exchange mechanism is based on electrostatic interactions between hydrated ions from a sample and oppositely charged functional groups on the stationary phase. Two types of mechanisms are used for the separation: in one mechanism, the elution uses a mobile phase that contains competing ions that would replace the analyte ions and push them off the column; another mechanism is to add a complexing reagent in the mobile phase and to change the sample species from their initial form. This modification on the molecules will lead them to elution. In addition to the exchange of ions, ion-exchange stationary phases are able to retain specific neutral molecules. This process is related to the retention based on the formation of complexes, and specific ions such as transition metals can be retained on a cation-exchange resin and can still accept lone-pair electrons from donor ligands. Thus neutral ligand molecules can be retained on resins treated with the transitional metal ions.

The modern ion exchange is capable of quantitative applications at rather low solute concentrations, and can be used in the analysis of aqueous samples for common inorganic anions (range 10 μg/L to 10 mg/L). Metal cations and inorganic anions are all separated predominantly by ionic interactions with the ion exchange resin. One of the largest industrial users of ion exchange is the food and beverage sector to determine the nitrogen-, sulfur-, and phosphorous- containing species as well as the halide ions. Also, ion exchange can be used to determine the dissolved inorganic and organic ions in natural and treated waters.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask