<< Chapter < Page Chapter >> Page >
General schematic of DMA analyzer.

The DMA should be ideally selected to analyze the material at hand. The DMA can be either stress or strain controlled: strain-controlled analyzers move the probe a certain distance and measure the stress applied; strain-controlled analyzers provide a constant deformation of the sample ( Figure 4 ). Although the two techniques are nearly equivalent when the stress-strain plot ( Figure 1 ) is linear, stress-controlled analyzers provide more accurate results.

Types of DMA. (a) Axially applied stress. (b) Torsionally applied stress. (c) Stress-controlled analyzer uses set movements. (d) Deformation is regulated in strain-controlled analyzers. Figure adapted from M. Sepe, Dynamic Mechanical Analysis for Plastics Engineering , Plastics Design Library: Norwich, NY (1998).

DMA analyzers can also apply stress or strain in two manners—axial and torsional deformation ( Figure 4 ). Axial deformation applies a linear force to the sample and is typically used for solid and semisolid materials to test flex, tensile strength, and compression. Torsional analyzers apply force in a twisting motion; this type of analysis is used for liquids and polymer melts but can also be applied to solids. Although both types of analyzers have wide analysis range and can be used for similar samples, the axial instrument should not be used for fluid samples with viscosities below 500 Pa-s, and torsional analyzers cannot handle materials with high modulus.

Different fixtures can be used to hold the samples in place and should be chosen according to the type of samples analyzed. The sample geometry affects both stress and strain and must be factored into the modulus calculations through a geometry factor. The fixture systems are specific to the type of stress application. Axial analyzers have a greater number of fixture options; one of the most commonly used fixtures is extension/tensile geometry used for thin films or fibers. In this method, the sample is held both vertically and lengthwise by top and bottom clamps, and stress is applied upwards ( Figure 5 ).

Axial analyzer with DMA instrument (left) and axial analyzer with extension/tensile geometry (right).

For torsional analyzers, the simplest geometry is the use of parallel plates. The plates are separated by a distance determined by the viscosity of the sample. Because the movement of the sample depends on its radius from the center of the plate, the stress applied is uneven; the measured strain is an average value.

Dma of the glass transition of polymers

As the temperature of a polymer increases, the material goes through a number of minor transitions ( T γ and T β ) due to expansion; at these transitions, the modulus also undergoes changes. The glass transition of polymers ( T g ) occurs with the abrupt change of physical properties within 140-160 o C; at some temperature within this range, the storage (elastic) modulus of the polymer drops dramatically. As the temperature rises above the glass transition point, the material loses its structure and becomes rubbery before finally melting. The idealized modulus transition is pictured in Figure 6 .

Ideal storage modulus transitions of viscoelastic polymers. Adapted from K. P. Menard, Dynamic Mechanical Analysis: A Practical Introduction , 2nd ed., CRC Press: Boca Raton, FL (2008).

The glass transition temperature can be determined using either the storage modulus, complex modulus, or tan δ (vs temperature) depending on context and instrument; because these methods result in such a range of values ( Figure 7 ), the method of calculation should be noted. When using the storage modulus, the temperature at which E’ begins to decline is used as the T g . Tan δ and loss modulus E” show peaks at the glass transition; either onset or peak values can be used in determining T g . These different methods of measurement are depicted graphically in Figure 7 .

Different industrial methods of calculating glass transition temperature ( T g ). Copyright 2014, TA Instruments. Used with permission.

Advantages and limitations of dma

Dynamic mechanical analysis is an essential analytical technique for determining the viscoelastic properties of polymers. Unlike many comparable methods, DMA can provide information on major and minor transitions of materials; it is also more sensitive to changes after the glass transition temperature of polymers. Due to its use of oscillating stress, this method is able to quickly scan and calculate the modulus for a range of temperatures. As a result, it is the only technique that can determine the basic structure of a polymer system while providing data on the modulus as a function of temperature. Finally, the environment of DMA tests can be controlled to mimic real-world operating conditions, so this analytical method is able to accurately predict the performance of materials in use.

DMA does possess limitations that lead to calculation inaccuracies. The modulus value is very dependent on sample dimensions, which means large inaccuracies are introduced if dimensional measurements of samples are slightly inaccurate. Additionally, overcoming the inertia of the instrument used to apply oscillating stress converts mechanical energy to heat and changes the temperature of the sample. Since maintaining exact temperatures is important in temperature scans, this also introduces inaccuracies. Because data processing of DMA is largely automated, the final source of measurement uncertainty comes from computer error.

Bibliography

  • K. P Menard, Dynamic Mechanical Analysis: A Practical Introduction , 2nd ed., CRC Press: Boca Raton, FL (2008).
  • M. A. Meyer and K. K. Chawla, Mechanical Properties of materials , 2nd. ed., Cambridge University Press: New York (2009).
  • G. Rotter and H. Ishida, Macromolecules , 1992, 25 , 2170.
  • E. I. Rivin, Stiffness and Damping in Mechanical Design , Marcel Dekker: New York (1999).
  • M. Sepe, Dynamic Mechanical Analysis for Plastics Engineering , Plastics Design Library: Norwich, NY (1998).
  • R. J. Young, Introduction to Polymers, 3rd ed., CRC Press: Boca Raton, FL (2011).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask