<< Chapter < Page Chapter >> Page >

In essence, the phase angle between the stress and strain tells us a great deal about the viscoelasticity of the material. For one, a small phase angle indicates that the material is highly elastic; a large phase angle indicates the material is highly viscous. Furthermore, separating the properties of modulus, viscosity, compliance, or strain into two separate terms allows the analysis of the elasticity or the viscosity of a material. The elastic response of the material is analogous to storage of energy in a spring, while the viscosity of material can be thought of as the source of energy loss.

A few key viscoelastic terms can be calculated from dynamic analysis; their equations and significance are detailed in Table 1 .

Key viscoelastic terms that can be calculated with DMA.
Term Equation Significance
Complex modulus ( E *) E* = E’ + iE” Overall modulus representing stiffness of material; combined elastic and viscous components
Elastic modulus ( E’ ) E’ = ( σ o o ) cosδ Storage modulus; measures stored energy and represents elastic portion
Viscous modulus ( E” ) E” = ( σ o o ) sinδ Loss modulus; contribution of viscous component on polymer that flows under stress
Loss tangent ( tan δ) Tan δ = E”/E’ Damping or index of viscoelasticity; compares viscous and elastic moduli

Types of dynamic experiments

A temperature sweep is the most common DMA test used on solid materials. In this experiment, the frequency and amplitude of oscillating stress is held constant while the temperature is increased. The temperature can be raised in a stepwise fashion, where the sample temperature is increased by larger intervals (e.g., 5 o C) and allowed to equilibrate before measurements are taken. Continuous heating routines can also be used (1-2 o C/minute). Typically, the results of temperature sweeps are displayed as storage and loss moduli as well as tan delta as a function of temperature. For polymers, these results are highly indicative of polymer structure. An example of a thermal sweep of a polymer is detailed later in this module.

In time scans, the temperature of the sample is held constant, and properties are measured as functions of time, gas changes, or other parameters. This experiment is commonly used when studying curing of thermosets, materials that change chemically upon heating. Data is presented graphically using modulus as a function of time; curing profiles can be derived from this information.

Frequency scans test a range of frequencies at a constant temperature to analyze the effect of change in frequency on temperature-driven changes in material. This type of experiment is typically run on fluids or polymer melts. The results of frequency scans are displayed as modulus and viscosity as functions of log frequency.

Instrumentation

The most common instrument for DMA is the forced resonance analyzer, which is ideal for measuring material response to temperature sweeps. The analyzer controls deformation, temperature, sample geometry, and sample environment.

Figure 3 displays the important components of the DMA, including the motor and driveshaft used to apply torsional stress as well as the linear variable differential transformer (LVDT) used to measure linear displacement. The carriage contains the sample and is typically enveloped by a furnace and heat sink.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask