<< Chapter < Page Chapter >> Page >

Gamma spectrum features

There are several dominant features that can be observed in a gamma spectrum. The dominant feature that will be seen is the photopeak. The photopeak is the peak that is generated when a gamma-ray is totally absorbed by the detector. Higher density detectors and larger detector sizes increase the probability of the gamma-ray being absorbed.

The second major feature that will be observed is that of the Compton edge and distribution. The Compton edge arises due to Compton Effect, wherein a portion of the energy of the gamma-ray is transferred to the semiconductor detector or the scintillator. This occurs when the relatively high energy gamma ray strikes a relatively low energy electron. There is a relatively sharp edge to the Compton edge that corresponds to the maximum amount of energy that can be transferred to the electron via this type of scattering. The broad peak lower in energy than the Compton edge is the Compton distribution and corresponds to the energies that result from a variety of scattering angles. A feature in Compton distribution is the backscatter peak. This peak is a result of the same effect but corresponds to the minimum energy amount of energy transferred. The sum of the energies of the Compton edge and the backscatter peak should yield the energy of the photopeak.

Another group of features in a gamma spectrum are the peaks that are associated with pair production. Pair production is the process by which a gamma ray of sufficiently high energy (>1.022 MeV) can produce an electron-positron pair. The electron and positron can annihilate and produce two 0.511 MeV gamma photons. If all three gamma rays, the original with its energy reduced by 1.022 MeV and the two annihilation gamma rays, are detected simultaneously, then a full energy peak is observed. If one of the annihilation gamma rays is not absorbed by the detector, then a peak that is equal to the full energy less 0.511 MeV is observed. This is known as an escape peak. If both annihilation gamma rays escape, then a full energy peak less 1.022 MeV is observed. This is known as a double escape peak.

Example of experiments

Determination of depleted uranium

Natural uranium is composed mostly of 238 U with low levels of 235 U and 234 U. In the process of making enriched uranium, uranium with a higher level of 235 U, depleted uranium is produced. Depleted uranium is used in many applications particularly for its high density. Unfortunately, uranium is toxic and is a potential health hazard and is sometimes found in trafficked radioactive materials, so it is important to have a methodology for detection and analysis of it.

One easy method for this determination is achieved by examining the spectrum of the sample and comparing it qualitatively to the spectrum of a sample that is known to be natural uranium. This type of qualitative approach is not suitable for issues that are of concern to national security. Fortunately, the same approach can be used in a quantitative fashion by examining the ratios of various gamma-ray photopeaks.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask