<< Chapter < Page Chapter >> Page >

Introduction

Gamma-ray (γ-ray) spectroscopy is a quick and nondestructive analytical technique that can be used to identify various radioactive isotopes in a sample. In gamma-ray spectroscopy, the energy of incident gamma-rays is measured by a detector. By comparing the measured energy to the known energy of gamma-rays produced by radioisotopes, the identity of the emitter can be determined. This technique has many applications, particularly in situations where rapid nondestructive analysis is required.

Background principles

Radioactive decay

The field of chemistry typically concerns itself with the behavior and interactions of stable isotopes of the elements. However, elements can exist in numerous states which are not stable. For example, a nucleus can have too many neutrons for the number of protons it has or contrarily, it can have too few neutrons for the number of protons it has. Alternatively, the nuclei can exist in an excited state, wherein a nucleon is present in an energy state that is higher than the ground state. In all of these cases, the unstable state is at a higher energy state and the nucleus must undergo some kind of decay process to reduce that energy.

There are many types of radioactive decay, but type most relevant to gamma-ray spectroscopy is gamma decay. When a nucleus undergoes radioactive decay by α or β decay, the resultant nucleus produced by this process, often called the daughter nucleus, is frequently in an excited state. Similar to how electrons are found in discrete energy levels around a nucleus, nucleons are found in discrete energy levels within the nucleus. In γ decay, the excited nucleon decays to a lower energy state and the energy difference is emitted as a quantized photon. Because nuclear energy levels are discrete, the transitions between energy levels are fixed for a given transition. The photon emitted from a nuclear transition is known as a γ-ray.

Radioactive decay kinetics and equilibria

Radioactive decay, with few exceptions, is independent of the physical conditions surrounding the radioisotope. As a result, the probability of decay at any given instant is constant for any given nucleus of that particular radioisotope. We can use calculus to see how the number of parent nuclei present varies with time. The time constant, λ, is a representation of the rate of decay for a given nuclei, [link] .

If the symbol N 0 is used to represent the number of radioactive nuclei present at t = 0, then the following equation describes the number of nuclei present at some given time.

The same equation can be applied to the measurement of radiation with some sort of detector. The count rate will decrease from some initial count rate in the same manner that the number of nuclei will decrease from some initial number of nuclei.

The decay rate can also be represented in a way that is more easily understood. The equation describing half-life (t 1/2 ) is shown in [link] .

The half-life has units of time and is a measure of how long it takes for the number of radioactive nuclei in a given sample to decrease to half of the initial quantity. It provides a conceptually easy way to compare the decay rates of two radioisotopes. If one has a the same number of starting nuclei for two radioisotopes, one with a short half-life and one with a long half-life, then the count rate will be higher for the radioisotope with the short half-life, as many more decay events must happen per unit time in order for the half-life to be shorter.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask