<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as a charged particle moves through a velocity selector
  • Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge carriers in a conducting material. From a historical perspective, this experiment was the first to demonstrate that the charge carriers in most metals are negative.

Visit this website to find more information about the Hall effect.

We investigate the Hall effect    by studying the motion of the free electrons along a metallic strip of width l in a constant magnetic field ( [link] ). The electrons are moving from left to right, so the magnetic force they experience pushes them to the bottom edge of the strip. This leaves an excess of positive charge at the top edge of the strip, resulting in an electric field E directed from top to bottom. The charge concentration at both edges builds up until the electric force on the electrons in one direction is balanced by the magnetic force on them in the opposite direction. Equilibrium is reached when:

e E = e v d B

where e is the magnitude of the electron charge, v d is the drift speed of the electrons, and E is the magnitude of the electric field created by the separated charge. Solving this for the drift speed results in

v d = E B .
An illustration of the Hall effect: In both figures, the current in the strip is to the left and the magnetic field points into the page. In figure a, a negative charge is moving to the right with velocity v d. Positive charges accumulate at the top of the strip, negative charges at the bottom of the strip. An electric field E sub H points down. The moving charge experiences an upward force e E sub H and a downward force e v sub d B. In figure b, a positive charge is moving to the left with velocity v d. Negative charges accumulate at the top of the strip, positive charges at the bottom of the strip. An electric field E sub H points up. The moving charge experiences an upward force e E sub H and a downward force e v sub d B.
In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when moving charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field situation. If these fields produce equal and opposite forces on a charged particle with the velocity that equates the forces, these particles are able to pass through an apparatus, called a velocity selector    , undeflected. This velocity is represented in [link] . Any other velocity of a charged particle sent into the same fields would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I , then from Current and Resistance , we know that

I = n e v d A

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining the equations for v d and I results in

I = n e ( E B ) A .

The field E is related to the potential difference V between the edges of the strip by

E = V l .

The quantity V is called the Hall potential and can be measured with a voltmeter. Finally, combining the equations for I and E gives us

V = I B l n e A

where the upper edge of the strip in [link] is positive with respect to the lower edge.

We can also combine [link] and [link] to get an expression for the Hall voltage in terms of the magnetic field:

V = B l v d .

What if the charge carriers are positive, as in [link] ? For the same current I , the magnitude of V is still given by [link] . However, the upper edge is now negative with respect to the lower edge. Therefore, by simply measuring the sign of V , we can determine the sign of the majority charge carriers in a metal.

Questions & Answers

distinguish between anatomy and physiology
Amina Reply
Anatomy is the study of internal structure of an organism while physiology is the study of the function/relationship of the body organs working together as a system in an organism.
adeyeye
distinguish between anatomy and physiology
Erny Reply
regional anatomy is the study of the body regionally
Ismail Reply
what is the meaning of regional anatomy
Aminat Reply
epithelial tissue: it covers the Hollow organs and body cavities
Esomchi Reply
in short way what those epithelial tissue mean
Zainab Reply
in short way what those epithelial tissue mean
Chizoba
What is the function of the skeleton
Lilias Reply
movement
Ogar
Locomotion
Ojo
support
Aishat
and body shape/form
Aishat
what is homeostasis?
Samuel Reply
what's physiology
AminchiSunday Reply
what is physiology
AminchiSunday
physically is the study of the function of the body
Najaatu
that is what I want ask
YAU
u are wright
YAU
pls what are the main treatment of hiccups
YAU
physiology is the study of the function of the body
Najaatu
hiccups happen when something irritates the nerves that course your diaphragm to contract
Najaatu
how did hypothalamus manege to control all activities of the various hormones
malual
what is protein
Abdulsalam
how can I treat pain a patient feels after eating meals
Namuli Reply
how do I treat a three year old baby of skin infection?
Okocha Reply
It depends on the type of infection. Bacterial, fungal, parasitic or viral?
schler
if you can share the sign ad symptoms of the skin infection then u geh the treatment cox they're different sign ad symptoms of skin infection with different treatment
Sa
the sign and symptoms of maleria
Abdulsalam
prostaglandin and fever
Maha Reply
yes
rayyanu
welcome sir
rayyanu
prostaglandin E2 is the final mediator.
Lemlem
prostaglandin E2 is the final mediator of fever.
Lemlem
yes
Agabi
good evening
Jediel
tissue.
Akoi
explain
Chizoba
Hi
Anya
,good evening
Anya
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask