<< Chapter < Page Chapter >> Page >

Unit vector

Unit vector has a magnitude of one and is directed in a particular direction. It does not have dimension or unit like most other physical quantities. Thus, multiplying a scalar by unit vector converts the scalar quantity into a vector without changing its magnitude, but assigning it a direction ( Figure ).

a = a a ^

Vector representation with unit vector

This is an important relation as it allows determination of unit vector in the direction of any vector " a as :

a ^ = a | a |

Conventionally, unit vectors along the rectangular axes is represented with bold type face symbols like : i , j and k , or with a cap heads like i ^ , j ^ and k ^ . The unit vector along the axis denotes the direction of individual axis.

Using the concept of unit vector, we can denote a vector by multiplying the magnitude of the vector with unit vector in its direction.

a = a a ^

Following this technique, we can represent a vector along any axis in terms of scalar magnitude and axial unit vector like (for x-direction) :

a = a i

Other important vector terms

Null vector

Null vector is conceptualized for completing the development of vector algebra. We may encounter situations in which two equal but opposite vectors are added. What would be the result? Would it be a zero real number or a zero vector? It is expected that result of algebraic operation should be compatible with the requirement of vector. In order to meet this requirement, we define null vector, which has neither magnitude nor direction. In other words, we say that null vector is a vector whose all components in rectangular coordinate system are zero.

Strictly, we should denote null vector like other vectors using a bold faced letter or a letter with an overhead arrow. However, it may generally not be done. We take the exception to denote null vector by number “0” as this representation does not contradicts the defining requirement of null vector.

a + b = 0

Negative vector

Negative vector
A negative vector of a given vector is defined as the vector having same magnitude, but applied in the opposite direction to that of the given vector.

It follows that if b is the negative of vector a , then

a = - b a + b = 0 and | a | = | b |

There is a subtle point to be made about negative scalar and vector quantities. A negative scalar quantity, sometimes, conveys the meaning of lesser value. For example, the temperature -5 K is a smaller temperature than any positive value. Also, a greater negative like – 100 K is less than the smaller negative like -50 K. However, a scalar like charge conveys different meaning. A negative charge of -10 μC is a bigger negative charge than – 5 μC. The interpretation of negative scalar is, thus, situational.

On the other hand, negative vector always indicates the sense of opposite direction. Also like charge, a greater negative vector is larger than smaller negative vector or a smaller positive vector. The magnitude of force -10 i N, for example is greater than 5 i N, but directed in the opposite direction to that of the unit vector i . In any case, negative vector does not convey the meaning of lesser or greater magnitude like the meaning of a scalar quantity in some cases.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask