<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Objective questions, contained in this module with hidden solutions, help improve understanding of the topics covered under the module "Law of motion in angular form for a system of particles".

The questions have been selected to enhance understanding of the topics covered in the module titled " Law for system in angular form for a system of particles ". All questions are multiple choice questions with one or more correct answers. There are two sets of the questions. The “understanding level” questions seek to unravel the fundamental concepts involved, whereas “application level” are relatively difficult, which may interlink concepts from other topics.

Each of the questions is provided with solution. However, it is recommended that solutions may be seen only when your answers do not match with the ones given at the end of this module.

Understanding level (law for motion in angular form for a system of particles )

A uniform circular disc of mass “M” and radius “R” rotates about one of its diameters at an angular speed “ω”. What is the angular momentum of the disc about the axis of rotation?

Circular disk

The circular disk rotates about one of its diameters.

(a) M R 2 ω (b) M R 2 ω 2 (c) M R 2 ω 3 (d) M R 2 ω 4

The angular momentum of a rigid body is given by the equation,

L = I ω

In order to find MI about diameter, we first calculate moment of inertia, " I C ", of the disk about a perpendicular axis passing through the center as :

I C = M R 2 2

Applying theorem of perpendicular axes, the moment of inertia about the axis of rotation (i.e. about one of the diameters) is :

I = I C 2 = M R 2 4

Therefore, the angular momentum of the disk about one of its diameter is :

L = I ω = M R 2 ω 4

Hence, option (d) is correct.

Got questions? Get instant answers now!

A thin uniform rod of mass "M" and length "x" rotates in a horizontal plane about a vertical axis. If the free end of the rod has a constant tangential velocity "v", then angular momentum of the rod about the axis of rotation is :

A rotating rod

The rod rotates about a perpendicular axis at one end.

(a) M v 2 x 3 (b) M v x 3 (c) M v x 2 3 (d) M v 2 x 2 6

The angular momentum of a rigid body is given by the equation,

L = l ω

Here, the rod rotates about a perpendicular axis at its end. Thus, we need to find MI of the rod, "I", about this axis. Using theorem of parallel axes, the MI about the axis of rotation is :"

A rotating rod

The rod rotates about a perpendicular axis at one end.

I = I C + M x ( x 2 ) 2 I = M x 2 12 + M x 2 4 = M x 2 3

Putting in the expression of angular momentum :

L = M x 2 ω 3

The angular velocity is expressed in terms of tangential velocity as :

ω = v x

Substituting this value in the expression of angular momentum, we have

L = M v x 3

Hence, option (b) is correct.

Got questions? Get instant answers now!

A thin uniform rod of mass "M" and length "3x" rotates in a horizontal plane with an angular velocity “ω” about a perpendicular vertical axis as shown in the figure. Then, the angular momentum of the rod about the axis of rotation is :

A rotating rod

The rod rotates about a perpendicular axis.

(a) M x 2 ω (b) M x 2 ω 2 (c) 2 M x 2 ω 3 (d) M x 2 ω 4

We know that angular momentum of a rigid body is given by :

L = l ω

We need to calculate the MI of the rod about the axis of rotation. Now, the MI of the rod about central axis is given by :

A rotating rod

The rod rotates about a perpendicular axis.

I C = M ( 3 x ) 2 12 = 3 M x 2 4

Applying theorem of parallel axis, the MI about the axis of rotation passing through point “O” is :

I O = I C + M d 2

Here,

d = 3 x 2 - x = x 2

I O = 3 M x 2 4 + M x 2 4 = M x 2

Therefore, angular momentum about the axis of rotation is :

L = I ω = M x 2 ω

Hence, option (a) is correct.

Note 1 : Alternatively, we can also calculate the angular momentum of the rod in terms of angular momentum of the parts on either side of the axis of rotation. Since each part rotates about the same axis of rotation, the net angular momentum of the rod about the axis of rotation is algebraic sum of the angular momentum of the parts.

The MI of the left rod, about a perpendicular axis at one of the ends, is :

A rotating rod

The MI of the left rod about a perpendicular axis at one end.

I OL = ( M 3 ) x 2 3 = M x 2 9

L OL = I ω = M x 2 ω 9

Similarly, the MI of the right rod is :

I OR = ( 2 M 3 ) ( 2 x ) 2 3 = 8 M x 2 9

L OR = I ω = 8 M x 2 ω 9

L = L OL + L OR L = M x 2 ω 9 + 8 M x 2 ω 9 = M x 2 ω

Note 2 : It must be understood here that we can not treat the rod as a particle at its center of mass and then find the angular momentum. For example, in this case, the center of mass is at distance of "3x/2" from either end of the rod and at a distance of "x/2" from the point "O" through which axis of rotation passes. The MI of this particle equivalent rod about the axis of rotation is :

I O = M x 2 4

and

L = I ω = M x 2 ω 4

Obviously, this approach is conceptually wrong. The concept of center of mass by definition is valid for translation - not rotation.

Got questions? Get instant answers now!

A circular ring of mass “M” and radius “R” rolls on a horizontal surface without sliding at a velocity “v”. What is the magnitude of angular momentum of the ring about point of contact?

Rolling of a circular ring

The circular ring of mass “M” and radius “R” rolls on a horizontal plane.

(a) M R v (b) 2 M R v (c) 2 M R v 3 (d) 3 M R v 2

Here, the point of contact and center of mass are in the plane of motion. Hence,

L = M r C x v C ) + I ω

Now, the magnitude of angular momentum of the body, considering it as a particle at center of mass, with respect to point of contact is :

L = M r C v C = M R v

This angular momentum is clockwise and into the page.

The magnitude of angular momentum about center of mass is same as that about its central axis i.e. perpendicular axis passing through center of mass :

I ω = M R 2 ω

For rolling motion, ω = v R

I ω = M R 2 x v R = M R v

This angular momentum is also clockwise and into the page. Therefore, the magnitude of net angular momentum is :

L = 2 M R v

Hence, option (b) is correct.

Got questions? Get instant answers now!

Q A solid sphere of mass “M” and radius “R” rolls on a horizontal surface without sliding at a velocity “v”. What is the magnitude of angular momentum of the ring about point of contact?

Rolling of a solid sphere

The solid sphere of mass “M” and radius “R” rolls on a horizontal plane.

(a) 2 M R v (b) 3 M R v 5 (c) 4 M R v 5 (d) 7 M R v 5

This question is similar to the previous one - with one exception that sphere is a three dimensional body as against the disk, which is two dimensional. However, the situation is same as far as the point about angular momentum is calculated and the center of mass. The point of contact and center of mass are in the same middle section of the sphere, along which motion takes place. Thus, the point of contact and center of mass of the solid sphere are in the plane of motion. Hence,

L = M ( r C x v C ) + I ω

Now, the magnitude of angular momentum of the body as particle at center of mass with respect to point of contact is :

M ( r C v C ) = M R v

This angular momentum is clockwise and into the page.

The magnitude of angular momentum about center of mass is same as that about its central axis i.e. perpendicular axis passing through center of mass :

I ω = 2 M R 2 ω 5

For rolling motion, ω = v R

I ω = 2 M R 2 v 5 R = 2 M R v 5

This angular momentum is also clockwise and into the page. The magnitude of net angular momentum, therefore, is :

L = M R v + 2 M R 2 v 5 = 7 M R 2 v 5

Hence, option (d) is correct.

Got questions? Get instant answers now!

Application level (law of motion in angular form for a system of particle)

Two blocks of masses “ m 1 ” and “ m 2 ” ( m 2 > m 1 ), connected by a mass-less pulley of radius “r”, are released from rest. What is the angular momentum of the system about the axis of rotation of the pulley, if the block travels a vertical distance of “y”.

Pulley – blocks system

Blocks are connected with a string passing over a pulley.

(a) 2 ( m 2 2 - m 1 2 ) g r 2 y ( m 1 + m 2 ) (b) 2 ( m 1 + m 2 ) 2 g r y ( m 2 - m 1 ) (c) 2 m 1 x m 2 g r 2 y ( m 1 + m 2 ) (d) 2 m 1 x m 2 g r 3 y ( m 1 + m 2 )

The pulley and string are both considered “mass-less”. Therefore, these elements do not contribute to the angular momentum of the system. Further, we also observe that we are required to find angular momentum about an axis - not about a point. We need to know the linear velocity of the blocks in order to calculate their angular momentum about the axis of rotation of the pulley. This, in turn, requires us to find the acceleration of the blocks in vertical direction.

Here, pulley is “mass-less”. Thus, tension in the string on either side of the pulley is same. From force analysis of each block :

Pulley – blocks system

Force diagram.

m 2 g - T = m 2 a T - m 1 g = m 1 a

a = ( m 2 - m 1 ) ( m 1 + m 2 ) g

For vertical motion of block " m 2 ", we have :

v 2 = u 2 + 2 a y = 0 + 2 a y = 2 a y

v 2 = 2 a y = 2 ( m 2 - m 1 ) g y ( m 1 + m 2 )

Now, angular momentums of the blocks are both clockwise. Hence, we can get magnitude of net angular momentum as arithmetic sum :

L = m 1 v r + m 2 v r = ( m 1 + m 2 ) v r

Substituting the value of the speed,

L = ( m 1 + m 2 ) x r x 2 ( m 2 - m 1 ) g y ( m 1 + m 2 )

L = 2 ( m 2 2 - m 1 2 ) g r 2 y ( m 1 + m 2 )

Hence, option (a) is correct.

Got questions? Get instant answers now!

Answers

1. (d) 2. (b) 3. (a) 4. (b) 5. (d) 6. (a)

Questions & Answers

What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask