<< Chapter < Page Chapter >> Page >

ω = ω 0 + α t

As a matter of fact, there exists one to one correspondence between two types of equation sets. Importantly, we can treat angular vector quantities as signed scalars in the equations of motion, dispensing with the need to use vector notation. The similarity of situation suggests that we need not derive equations of motion again for the circular motion. We, therefore, proceed to simply write equation of angular motion with appropriate substitution.

In this section of circular motion kinematics, our interest or domain of study is usually limited to the motion or acceleration in tangential direction. We may not refer to the requirement of motion in the radial direction in the form of centripetal acceleration, unless stated specifically.

What corresponds to what ?

The correspondence goes like this : the angular position is “θ” for linear “x”; the angular displacement is “Δθ” for linear “Δx”; the angular velocity is “ω” for linear “v” and the angular acceleration is “α” for linear “a”.

Angular quantities

The different angular quantities corresponding to their linear counterparts are listed here fore ready reference :

Quantities Linear variables Angular variables Initial position x 0 θ 0 Final position x θ Displacement Δ x Δ θ Initial velocity v 0 ω 0 Final velocity v ω Acceleration a α Time interval t t

Basic equations

The corresponding equations for the two types of motion are :

S.N. Linear equation Angular equation 1: v = v 0 + a t ω = ω 0 + α t 2: v avg = ( v 0 + v ) 2 θ ω avg = ( ω 0 + ω ) 2 3: Δ x = x - x 0 = v 0 t + 1 2 a t 2 Δ θ = θ - θ 0 = ω 0 t + 1 2 α t 2

Derived equations

The derived equations for the two types of motion are :

S.N. Linear equation Angular equation 1: v 2 = v 0 2 + 2 a ( x - x 0 ) ω 2 = ω 0 2 + 2 α ( θ - θ 0 ) 2: Δ x = ( x - x 0 ) = ( v 0 + v ) t 2 Δ θ = ( θ - θ 0 ) = ( ω 0 + ω ) t 2 3: Δ x = x - x 0 = v t - 1 2 a t 2 Δ θ = θ - θ 0 = ω t - 1 2 α t 2

Sign of angular quantities

The sign of angular quantities represents direction. A positive sign indicates anti-clockwise direction, whereas a negative sign indicates clockwise direction.

In the measurement of angle, a typical problem arises from the fact that circular motion may continue to rotate passing through the reference point again and again. The question arises, whether we keep adding angle or reset the measurement from the reference point ? The answer is that angle measurement is not reset in rotational kinematics. This means that we can have measurements like 540° and 20 rad etc.

Measurement of angle

The measurement of angle is not reset.

This convention is not without reason. Equations of motion of circular motion with constant acceleration treats motion in an equivalent linear frame work, which considers only one reference position. If we reset the measurements, then equations of motion would not be valid.

Problem : The angular velocity – time plot of the circular motion is shown in the figure. (i) Determine the nature of angular velocity and acceleration at positions marked A, B, C, D and E. (ii) In which of the segments (AB, BC, CD and DE) of motion, the particle is decelerated and (iii) Is angular acceleration constant during the motion ?

Angular velocity – time plot

Solution :

(i) Angular velocity :

The angular velocities at A and E are positive (anti-clockwise). The angular velocities at B and D are each zero. The angular velocities at C is negative (clockwise).

Angular acceleration :

The angular acceleration is equal to the first differential of angular velocity with respect to time.

α = đ ω đ t

The sign of the angular acceleration is determined by the sign of the slope at different positions. The slopes at various points are as shown in the figure :

Slopes at different points

The angular accelerations at point A and B are negative (angular speed decreases with the passage of time). The angular accelerations at C is zero. The angular accelerations at point D and E are positive (angular speed increases with the passage of time).

(ii) Deceleration :

In the segments AB and CD, the magnitude of angular velocity i.e. angular speed decreases with the passage of time. Thus, circular motions in these two segments are decelerated. This is also confirmed by the fact that angular velocity and angular acceleration are in opposite directions in these segments.

(iii) The slopes on angular velocity - time plot are different at different points. Thus, angular accelerations are different at these points. Hence, angular acceleration of the motion is not constant.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask