<< Chapter < Page Chapter >> Page >

Relative velocity

This technique is a very useful tool for consideration of relative motion in two dimensions.

Direction of relative velocities

For a pair of two moving objects moving uniformly, there are two values of relative velocity corresponding to two reference frames. The values differ only in sign – not in magnitude. This is clear from the example here.

Problem : Two cars start moving away from each other with speeds 1 m/s and 2 m/s along a straight road. What are relative velocities ? Discuss the significance of their sign.

Solution : Let the cars be denoted by subscripts “1” and “2”. Let us also consider that the direction v 2 is the positive reference direction, then relative velocities are :

Relative velocity

v 1 2 = v 1 - v 2 = - 1 - 2 = - 3 m / s v 2 1 = v 2 - v 1 = 2 - ( - 1 ) = 3 m / s

The sign attached to relative velocity indicates the direction of relative velocity with respect to reference direction. The directions of relative velocity are different, depending on the reference object.

However, two relative velocities with different directions mean same physical situation. Let us read the negative value first. It means that car 1 moves away from car 2 at a speed of 3 m/s in the direction opposite to that of car 2. This is exactly the physical situation. Now for positive value of relative velocity, the value reads as car 2 moves from car 1 in the direction of its own velocity. This also is exactly the physical situation. There is no contradiction as far as physical interpretation is concerned. Importantly, the magnitude of approach – whatever be the sign of relative velocity – is same.

Relative velocity

Got questions? Get instant answers now!

Relative velocity .vs. difference in velocities

It is very important to understand that relative velocity refers to two moving bodies – not a single body. Also that relative velocity is a different concept than the concept of "difference of two velocities", which may pertain to the same or different objects. The difference in velocities represents difference of “final” velocity and “initial” velocity and is independent of any order of subscript. In the case of relative velocity, the order of subscripts are important. The expression for two concepts viz relative velocity and difference in velocities may look similar, but they are different concepts.

Relative acceleration

We had restricted out discussion up to this point for objects, which moved with constant velocity. The question, now, is whether we can extend the concept of relative velocity to acceleration as well. The answer is yes. We can attach similar meaning to most of the quantities - scalar and vector both. It all depends on attaching physical meaning to the relative concept with respect to a particular quantity. For example, we measure potential energy (a scalar quantity) with respect to an assumed datum.

Extending concept of relative velocity to acceleration is done with the restriction that measurements of individual accelerations are made from the same reference.

If two objects are moving with different accelerations in one dimension, then the relative acceleration is equal to the net acceleration following the same working relation as that for relative velocity. For example, let us consider than an object designated as "1" moves with acceleration " a 1 " and the other object designated as "2" moves with acceleration " a 2 " along a straight line. Then, relative acceleration of "1" with respect to "2" is given by :

a 1 2 = a 1 - a 2

Similarly,relative acceleration of "2" with respect to "1" is given by :

a 2 1 = a 2 - a 1

Worked out problems

Relative motion

Problem : Two trains are running on parallel straight tracks in the same direction. The train, moving with the speed of 30 m/s overtakes the train ahead, which is moving with the speed of 20 m/s. If the train lengths are 200 m each, then find the time elapsed and the ground distance covered by the trains during overtake.

Solution : First train, moving with the speed of 30 m/s overtakes the second train, moving with the speed of 20 m/s. The relative speed with which first train overtakes the second train,

v 12 = v 1 - v 2 = 30 - 20 = 10 m/s.

The figure here shows the initial situation, when faster train begins to overtake and the final situation, when faster train goes past the slower train. The total distance to be covered is equal to the sum of each length of the trains (L1 + L2) i.e. 200 + 200 = 400 m. Thus, time taken to overtake is :

The total relative distance

The total relative distance to cover during overtake is equal to the sum of lengths of each train.

t = 400 10 = 40 s.

In this time interval, the two trains cover the ground distance given by:

s = 30 x 40 + 20 x 40 = 1200 + 800 = 2000 m.

Got questions? Get instant answers now!

In the question given in the example, if the trains travel in the opposite direction, then find the time elapsed and the ground distance covered by the trains during the period in which they cross each other.

v 12 = v 1 - v 2 = 30 - ( - 20 ) = 50 m/s.

The total distance to be covered is equal to the sum of each length of the trains i.e. 200 + 200 = 400 m. Thus, time taken to overtake is :

t = 400 50 = 8 s.

Now, in this time interval, the two trains cover the ground distance given by:

s = 30 x 8 + 20 x 8 = 240 + 160 = 400 m.

In this case, we find that the sum of the lengths of the trains is equal to the ground distance covered by the trains, while crossing each other.

Got questions? Get instant answers now!

Check your understanding

Check the module titled Relative velocity in one dimension (Check your understanding) to test your understanding of the topics covered in this module.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask