<< Chapter < Page Chapter >> Page >

Why should we study vectors?

The basic concepts in physics – particularly the branch of mechanics - have a direct and inherently characterizing relationship with the concept of vector. The reason lies in the directional attribute of quantities, which is used to describe dynamical aspect of natural phenomena. Many of the physical terms and concepts are simply vectors like position vector, displacement vector etc. They are as a matter of fact defined directly in terms of vector like “it is a vector ……………”.

The basic concept of “cause and effect” in mechanics (comprising of kinematics and dynamics), is predominantly based on the interpretation of direction in addition to magnitude. Thus, there is no way that we could accurately express these quantities and their relationship without vectors. There is, however, a general tendency (particular in the treatment designed for junior classes) to try to evade vectors and look around ways to deal with these inherently vector based concepts without using vectors! As expected this approach is a poor reflection of the natural process, where basic concepts are simply ingrained with the requirement of handling direction along with magnitude.

It is, therefore, imperative that we switch over from work around approach to vector approach to study physics as quickly as possible. Many a times, this scalar “work around” inculcates incorrect perception and understanding that may persist for long, unless corrected with an appropriate vector description.

The best approach, therefore, is to study vector in the backdrop of physical phenomena and use it with clarity and advantage in studying nature. For this reasons, our treatment of “vector physics” – so to say - in this course will strive to correlate vectors with appropriate physical quantities and concepts.

The most fundamental reason to study nature in terms of vectors, wherever direction is involved, is that vector representation is concise, explicit and accurate.

To score this point, let us consider an example of the magnetic force experienced by a charge, q, moving with a velocity v in a magnetic field, “ B . The magnetic force, F , experienced by moving particle, is perpendicular to the plane, P, formed by the the velocity and the magnetic field vectors as shown in the figure .

Magnetic force as cross product of vectors

The force is given in the vector form as :

F = q ( v x B )

This equation does not only define the magnetic force but also outlines the intricacies about the roles of the each of the constituent vectors. As per vector rule, we can infer from the vector equation that :

  • The magnetic force ( F ) is perpendicular to the plane defined by vectors v and B .
  • The direction of magnetic force i.e. which side of plane.
  • The magnitude of magnetic force is "qvB sinθ", where θ is the smaller angle enclosed between the vectors v and B .

This example illustrates the compactness of vector form and completeness of the information it conveys. On the other hand, the equivalent scalar strategy to describe this phenomenon would involve establishing an empirical frame work like Fleming’s left hand rule to determine direction. It would be required to visualize vectors along three mutually perpendicular directions represented by three fingers in a particular order and then apply Fleming rule to find the direction of the force. The magnitude of the product, on the other hand, would be given by qvB sinθ as before.

The difference in two approaches is quite remarkable. The vector method provides a paragraph of information about the physical process, whereas a paragraph is to be followed to apply scalar method ! Further, the vector rules are uniform and consistent across vector operations, ensuring correctness of the description of physical process. On the other hand, there are different set of rules like Fleming left and Fleming right rules for two different physical processes.

The last word is that we must master the vectors rather than avoid them - particularly when the fundamentals of vectors to be studied are limited in extent.

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask