<< Chapter < Page Chapter >> Page >
An introduction to fields and complex numbers.

Fields

In order to propely discuss the concept of vector spaces in linear algebra, it is necessary to develop the notion of a set of “scalars” by which we allow a vector to be multiplied. A framework within which our concept of real numbers would fit is desireable. Thus, we would like a set with two associative, commutative operations (like standard addition and multiplication) and a notion of their inverse operations (like subtraction and division). The mathematical algebraic construct that addresses this idea is the field. A field ( S , + , * ) is a set S together with two binary operations + and * such that the following properties are satisfied.

  1. Closure of S under + : For every x , y S , x + y S .
  2. Associativity of S under + : For every x , y , z S , ( x + y ) + z = x + ( y + z ) .
  3. Existence of + identity element: There is a e + S such that for every x S , e + + x = x + e + = x .
  4. Existence of + inverse elements: For every x S there is a y S such that x + y = y + x = e + .
  5. Commutativity of S under + : For every x , y S , x + y = y + x .
  6. Closure of S under * : For every x , y S , x * y S .
  7. Associativity of S under * : For every x , y , z S , ( x * y ) * z = x * ( y * z ) .
  8. Existence of * identity element: There is a e * S such that for every x S , e * + x = x + e * = x .
  9. Existence of * inverse elements: For every x S with x e + there is a y S such that x * y = y * x = e * .
  10. Commutativity of S under * : For every x , y S , x * y = y * x .
  11. Distributivity of * over + : For every x , y , z S , x * ( y + z ) = x y + x z .

While this definition is quite general, the two fields used most often in signal processing, at least within the scope of this course, are the real numbers and the complex numbers, each with their typical addition and multiplication operations.

The complex field

The reader is undoubtedly already sufficiently familiar with the real numbers with the typical addition and multiplication operations. However, the field of complex numbers with the typical addition and multiplication operations may be unfamiliar to some. For that reason and its importance to signal processing, it merits a brief explanation here.

Definitions

The notion of the square root of -1 originated with the quadratic formula: the solution of certain quadratic equations mathematically exists only if the so-called imaginary quantity -1 could be defined. Euler first used i for the imaginary unit but that notation did not take hold untilroughly Ampère's time. Ampère used the symbol i to denote current (intensité de current).It wasn't until the twentieth century that the importance of complex numbers to circuit theory became evident. By then, using i for current was entrenched and electrical engineers now choose j for writing complex numbers.

An imaginary number has the form j b b 2 . A complex number , z , consists of the ordered pair ( a , b ), a is the real component and b is the imaginary component (the j is suppressed because the imaginary component of the pair is always in the second position). The imaginary number j b equals ( 0 , b ). Note that a and b are real-valued numbers.

[link] shows that we can locate a complex number in what we call the complex plane . Here, a , the real part, is the x -coordinate and b , the imaginary part, is the y -coordinate.

The complex plane

A complex number is an ordered pair ( a , b ) that can be regarded as coordinates in the plane. Complex numbers can also be expressed in polar coordinates as r θ .
From analytic geometry, we know that locations in the plane can be expressed as the sum of vectors, with the vectors corresponding to the x and y directions. Consequently, a complex number z can be expressed as the (vector) sum z a j b where j indicates the y -coordinate. This representation is known as the Cartesian form of z . An imaginary number can't be numerically added to a real number;rather, this notation for a complex number represents vector addition, but it provides a convenient notation when we perform arithmetic manipulations.

Questions & Answers

what is oxidation
Chidiebube Reply
calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask