<< Chapter < Page Chapter >> Page >

Recall, for discrete-time finite length signals, the definition of the DFT and the inverse DFT, both in its normalized form: $(DFT)~~X[k]= \sum_{n=0}^{N-1} x[n]\, \frac{e^{-j \frac{2\pi}{N}kn}}{\sqrt N} \\[2mm](Inverse DFT)~~x[n] = \sum_{k=0}^{N-1} X[k]\, \frac{e^{j \frac{2\pi}{N}kn}}{\sqrt N}$ and in its much more commonly used un-normalized form:$(DFT)~~X[k] = \sum_{n=0}^{N-1} x[n]\, e^{-j \frac{2\pi}{N}kn} \\[2mm] (Inverse DFT)~~x[n]= \frac{1}{N}\sum_{k=0}^{N-1} X[k] \, e^{j \frac{2\pi}{N}kn}$A signal $x[n]$ and its DFT $X[k]$ (recall there is a one-to-one correspondence) are referred to as a DFT PAIR. The DFT has a variety of properties, which we will now consider.

The dft and its inverse are periodic

The DFT is defined for finite-length (length $N$) signals; so, for $x[n]$, $n$ runs from $0$ to $N-1$, as does $k$. But let is us see what happens when we consider a value of $k$ outside this range in the DFT formula, say $X[k+lN]$, where $l$ is some nonzero integer: $\begin{align*}X[k+l N]&=~ \sum_{n=0}^{N-1} x[n]\,e^{-j \frac{2\pi}{N}(k+l N)n}\\&=\sum_{n=0}^{N-1} x[n]\, e^{-j \frac{2\pi}{N}kn} e^{-j \frac{2\pi}{N}l N n}\\&=\sum_{n=0}^{N-1} x[n]\, e^{-j \frac{2\pi}{N}kn}\cdot 1\\&=\sum_{n=0}^{N-1} x[n]\, e^{-j \frac{2\pi}{N}kn}\\&= X[k] \end{align*}$As $X[k+lN]=X[k]$, the DFT is periodic:
Image
CAPTION.
By the same token, the inverse DFT is also periodic: $\begin{align*}x[n+l N]&=~ \frac{1}{N}\sum_{k=0}^{N-1} X[k]\,e^{j \frac{2\pi}{N}k(n+lN)}\\&=\sum_{k=0}^{N-1} X[k]\, e^{j \frac{2\pi}{N}kn} e^{j \frac{2\pi}{N}klN}\\&=\sum_{k=0}^{N-1} X[k]\, e^{j \frac{2\pi}{N}kn}\cdot 1\\&=\sum_{k=0}^{N-1} X[k]\, e^{j \frac{2\pi}{N}kn}\\&= x[n] \end{align*}$Again this is to be expected because the complex harmonic sinusoids of the inverse DFT sum are periodic. This also further illustrates the fact that any finite-length signals can be understood as a single period of a periodic signal.

Dft frequency ranges

A complex harmonic sinuoids $e^{j(\frac{2\pi}{N}k)n}$ has, by definition, a frequency of $\frac{2\pi}{N}k$, which may label as $\omega_k$. In the DFT of a signal of length $N$, the variable $k$ rangers from $0$ to $N-1$, which corresponds to frequencies from $0$ to (just about) $2\pi$:
Image
For an $N=16$ length signal, one way to express the range of frequencies is for $k$ to run from $0$ to $N-1$, which corresponds to frequencies between $0$ and $2\pi$.
However, as we saw above, since the DFT is periodic, $0$ to $N-1$ is not the only range of $k$ we may use to express the DFT. Since $X[k]=X[k-N]$, we may let $k$ run from $-\frac{N}{2}$ to $\frac{N}{2}-1$ (for even $N$, that is; for odd $N$ it would be $-\frac{N-1}{2}$ to $\frac{N-1}{2}$):
Image
For an $N=16$ length signal, another way to express the range of frequencies is for $k$ to run from $-\frac{N}{2}$ to $\frac{N}{2}-1$, which corresponds to frequencies between $-\pi$ and $\pi$.

Shifts in time and frequency

Let $x[n]$ and $X[k]$ be a DFT pair (i.e., $X[k]$ is the DFT of $x[n]$). A circular shift in time on $x[n]$ will produce a phase shift on $X[k]$: $x[(n-m)_N]~\stackrel{\textrm{DFT}}{\longleftrightarrow}~ e^{-j\frac{2\pi}{N}km} X[k]$To prove this relationship, we first note that for the circular shift $(n-m)_N$, there is some integer $l$ such that $(n-m)_N=n-m+lN$. We will use that fact for a change of variables in our proof: $\begin{align*}\textrm{DFT}\{x[(n-m)_N]\}&=\sum_{n=0}^{N-1} x[(n-m)_N]\, e^{-j \frac{2\pi}{N}kn}\\&\textrm{Let }r=(n-m)_N=n-m+lN\\&=\sum_{r=0}^{N-1} x[r]\,e^{-j \frac{2\pi}{N}k (r+m-lN)}\\&=\sum_{r=0}^{N-1} x[r]\,e^{-j \frac{2\pi}{N}kr}e^{-j \frac{2\pi}{N}m}e^{-j \frac{2\pi}{N}lN}\\&=e^{-j \frac{2\pi}{N}m}\sum_{r=0}^{N-1} x[r]\,e^{-j \frac{2\pi}{N}kr}\cdot 1\\&=e^{-j\frac{2\pi}{N}km} X[k]\end{align*}$ As you might expect from the symmetrical similarities between the DFT and inverse DFT, a comparable relationship exists in the other direction as well. A circular shift in the frequency domain of a signal results in the modulation of the signal in the time domain:$e^{j\frac{2\pi}{N}l n} \, x[n] ~\stackrel{\textrm{DFT}}{\longleftrightarrow}~ X[(k-l)_N]$ The proof of this property follows the same approach as that of the first.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete-time signals and systems' conversation and receive update notifications?

Ask