<< Chapter < Page Chapter >> Page >

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very stretchable. The elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases and arterial walls stretch when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in the arteries drops and the arterial walls relax to maintain the blood flow. When you feel your pulse, you are feeling exactly this—the elastic behavior of the arteries as the blood gushes through with each pump of the heart. If the arteries were rigid, you would not feel a pulse. The heart is also an organ with special elastic properties. The lungs expand with muscular effort when we breathe in but relax freely and elastically when we breathe out. Our skins are particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg with no visible sag in their skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in elasticity starts in the early 20s.

Calculating deformation: how much does your leg shorten when you stand on it?

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

F = mg = 62 . 0 kg 9 . 80 m /s 2 = 607 . 6 N , size 12{F= ital "mg"= left ("62" "." 0`"kg" right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right )="607" "." 6``N} {}

and the cross-sectional area is πr 2 = 1 . 257 × 10 3 m 2 size 12{πr rSup { size 8{2} } =1 "." "257"` times "10" rSup { size 8{ - 3} } m rSup { size 8{2} } } {} . The equation Δ L = 1 Y F A L 0 size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {} can be used to find the change in length.

Solution

All quantities except Δ L size 12{ΔL} {} are known. Note that the compression value for Young’s modulus for bone must be used here. Thus,

Δ L = 1 9 × 10 9 N/m 2 607 . 6 N 1. 257 × 10 3 m 2 ( 0 . 400 m ) = 2 × 10 −5 m. alignl { stack { size 12{ΔL= { {1} over {9 times "10" rSup { size 8{9} } " N/m" rSup { size 8{2} } } } times { {"607" "." "6 N"} over {1 "." "257" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{2} } } } times 0 "." "400 m"} {} #=0 "." "002" times "10" rSup { size 8{ - 3} } " m" {} } } {}

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in [link] have larger values of Young’s modulus Y size 12{Y} {} . In other words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

F A = Y Δ L L 0 . size 12{ { {F} over {A} } =Y { {ΔL} over {L rSub { size 8{0} } } } } {}

The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress    (measured in N/m 2 ), and the ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain    (a unitless quantity). In other words,

stress = Y × strain . size 12{"stress"=Y times "strain"} {}

In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to deformation. If we again rearrange this equation to the form

F = YA Δ L L 0 , size 12{F= ital "YA" { {ΔL} over {L rSub { size 8{0} } } } } {}

we see that it is the same as Hooke’s law with a proportionality constant

k = YA L 0 . size 12{k= { { ital "YA"} over {L rSub { size 8{0} } } } } {}

This general idea—that force and the deformation it causes are proportional for small deformations—applies to changes in length, sideways bending, and changes in volume.

Stress

The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress measured in N/m 2 .

Strain

The ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain (a unitless quantity). In other words,

stress = Y × strain . size 12{"stress"=Y times "strain"} {}

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics: physics of california. OpenStax CNX. Sep 30, 2013 Download for free at http://legacy.cnx.org/content/col11577/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics: physics of california' conversation and receive update notifications?

Ask