<< Chapter < Page Chapter >> Page >
This module will take the ideas of sampling CT signals further by examining how such operations can be performed in the frequency domain and by using a computer.

Introduction

We just covered ideal (and non-ideal) (time) sampling of CT signals . This enabled DT signal processing solutions for CTapplications ( ):

Much of the theoretical analysis of such systems relied on frequency domain representations. How do we carry out thesefrequency domain analysis on the computer? Recall the following relationships: x n DTFT X x t CTFT X where and are continuous frequency variables.

Sampling dtft

Consider the DTFT of a discrete-time (DT) signal x n . Assume x n is of finite duration N ( i.e. , an N -point signal).

X n N 1 0 x n n
where X is the continuous function that is indexed by thereal-valued parameter . The other function, x n , is a discrete function that is indexed by integers.

We want to work with X on a computer. Why not just sample X ?

X k X 2 N k n N 1 0 x n 2 k N n
In we sampled at 2 N k where k 0 1 N 1 and X k for k 0 N 1 is called the Discrete Fourier Transform (DFT) of x n .

Finite duration dt signal

The DTFT of the image in is written as follows:

X n N 1 0 x n n
where is any 2 -interval, for example .

Sample x()

where again we sampled at 2 N k where k 0 1 M 1 . For example, we take M 10 . In the following section we will discuss in more detail how we should choose M , the number of samples in the 2 interval.

(This is precisely how we would plot X in Matlab.)

Got questions? Get instant answers now!

Choosing m

Case 1

Given N (length of x n ), choose M N to obtain a dense sampling of the DTFT ( ):

Case 2

Choose M as small as possible (to minimize the amount of computation).

In general, we require M N in order to represent all information in n n 0 N 1 x n Let's concentrate on M N : x n DFT X k for n 0 N 1 and k 0 N 1 numbers Nnumbers

Discrete fourier transform (dft)

Define

X k X 2 k N
where N length x n and k 0 N 1 . In this case, M N .

Dft

X k n N 1 0 x n 2 k N n

Inverse dft (idft)

x n 1 N k N 1 0 X k 2 k N n

Interpretation

Represent x n in terms of a sum of N complex sinusoids of amplitudes X k and frequencies k k 0 N 1 k 2 k N

Fourier Series with fundamental frequency 2 N

Remark 1

IDFT treats x n as though it were N -periodic.

x n 1 N k N 1 0 X k 2 k N n
where n 0 N 1

What about other values of n ?

x n N ???

Got questions? Get instant answers now!

Remark 2

Proof that the IDFT inverts the DFT for n 0 N 1

1 N k N 1 0 X k 2 k N n 1 N k N 1 0 m N 1 0 x m 2 k N m 2 k N n ???

Computing dft

Given the following discrete-time signal ( ) with N 4 , we will compute the DFT using two different methods (the DFTFormula and Sample DTFT):

  • DFT Formula
    X k n N 1 0 x n 2 k N n 1 2 k 4 2 k 4 2 2 k 4 3 1 2 k k 3 2 k
    Using the above equation, we can solve and get thefollowing results: x 0 4 x 1 0 x 2 0 x 3 0
  • Sample DTFT. Using the same figure, , we will take the DTFT of the signal and get the following equations:
    X n 0 3 n 1 4 1 ???
    Our sample points will be: k 2 k 4 2 k where k 0 1 2 3 ( ).

Got questions? Get instant answers now!

Periodicity of the dft

DFT X k consists of samples of DTFT, so X , a 2 -periodic DTFT signal, can be converted to X k , an N -periodic DFT.

X k n N 1 0 x n 2 k N n
where 2 k N n is an N -periodic basis function (See ).

Also, recall,

x n 1 N n N 1 0 X k 2 k N n 1 N n N 1 0 X k 2 k N n m N ???

Illustration

When we deal with the DFT, we need to remember that, in effect, this treats the signal as an N -periodic sequence.

Got questions? Get instant answers now!

A sampling perspective

Think of sampling the continuous function X , as depicted in . S will represent the sampling function applied to X and is illustrated in as well. This will result in our discrete-time sequence, X k .

Remember the multiplication in the frequency domain is equal to convolution in the time domain!

Inverse dtft of s()

k 2 k N
Given the above equation, we can take the DTFT and get thefollowing equation:
N m n m N S n

Why does equal S n ?

S n is N -periodic, so it has the following Fourier Series :

c k 1 N n N 2 N 2 n 2 k N n 1 N
S n k 2 k N n
where the DTFT of the exponential in the above equation is equal to 2 k N .

Got questions? Get instant answers now!

So, in the time-domain we have ( ):

Connections

Combine signals in to get signals in .

Questions & Answers

what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intro to digital signal processing. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10203/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intro to digital signal processing' conversation and receive update notifications?

Ask