<< Chapter < Page Chapter >> Page >

Compared to their continuous-time counterparts (those that take a continuous-valued independent time variable $t$), discrete-time sinusoidal signals have two unique characteristics. It is possible for them to alias , and they are not always periodic .

Aliasing of discrete-time sinusoids

One might think that if two different discrete-time sinuoids have different frequencies, that they would be different signals. Such is the case with continuous-time sinusoids, but not always for the discrete-time version. Consider two discrete-time sinuoids $x_1[n]$ and $x_2[n]$ with different frequencies, $\omega$ and $\omega+2\pi$: $x_1[n]=e^{j(\omega n+\phi)}$ $x_2[n]=e^{j((\omega+2\pi)n +\phi}$ We can then simplify the expression of $x_2[n]$, using the fact that $e^{j2\pi}=1$ to arrive at this surprising conclusion: $x_2[n]=e^{j((\omega+2\pi)n +\phi}=e^{j(\omega n+2\pi n +\phi)}=e^{j(\omega n +\phi)}e^{j2\pi n}=e^{j(\omega n +\phi)}(1)^n=e^{j(\omega n +\phi)}=x_1[n]$So $x_1[n]$ and $x_2[n]$ had different frequencies, yet they are identical! You can see this plotted out with $\omega=\frac{\pi}{6}$ below:
Image
$x_1[n]=\cos\left(\frac{\pi}{6}n\right)$.
Image
$x_2[n]=\cos\left(\frac{13\pi}{6}n\right) = \cos\left((\frac{\pi}{6}+2\pi)n\right)$.
Here $x_1[n]$ and $x_2[n]$ have different frequencies, yet are identical.
This phenomenon is called aliasing . It happens when frequencies are offset by any integer multiple of $2\pi$ (you can use $\omega+2\pi m$ in the example above and see for yourself).

So only frequencies along a continuous interval of length $2\pi$ on the real number are distinct from each other. For this reason, when we deal with discrete-time frequencies we consider only those along the interval $0\leq\omega\lt2\pi$ or $-\pi\lt\omega\leq\pi$, as any other frequency aliases back to an identical signal with a frequency in that range. Within these ranges, frequencies close to $0$ (or $2\pi, depending on the range used) are low frequencies--their sinusoids do not oscillate very quickly-- and frequencies close to $\pi$ (or $-\pi, depending on the range) are high frequencies:

Image
$\cos\left(\frac{\pi}{10}n\right)$.
Image
$\cos\left(\frac{9 \pi}{10}n\right)$.
(a) Low frequencies are those $\omega$ close to 0 or $2\pi$ rad. (b) High frequencies are those $\omega$ close to $\pi$ or $-\pi$ rad.

Periodicity of discrete-time sinusoids

Recall that a signal $x[n]$ is defined to be periodic if there exists some integer $N$ for which $x[n+N]=x[n]~,~\forall n$. Suppose we have a complex sinusoid with a frequency $\omega=2\pi\frac{k}{N}$, where $k$ and $N$ are integers. This just means that $\omega$ is a fraction of $2\pi$. It turns out that this signal is periodic, with period $N$:$\begin{align*} x[n]&=e^{j(2\pi\frac{k}{N} n+ \phi)}\\ x[n+N]&=e^{j(2\pi\frac{k}{N} (n+N) + \phi)} \\&=e^{j(2\pi\frac{k}{N} n + 2\pi\frac{k}{N} N + \phi)}\\&=e^{j(2\pi\frac{k}{N} n + \phi)} e^{j(2\pi\frac{k}{N} N)}\\&=e^{j(2\pi\frac{k}{N} n + \phi)}e^{j(2\pi\frac{k}{N}N)}\\&=e^{j(2\pi\frac{k}{N} n + \phi)}(e^{j(2\pi k)})\\&=x[n] \end{align*}$Here is a plot of a sinusoid with frequency $2\pi\frac{3}{16}$. You will note that it has a period of $N=16$:
Image
$x_1[n] = \cos( \frac{2\pi 3}{16} n)$ is periodic, with $N=16$.
Now, these fractions of $2\pi$ are special values of $\omega$ we will call harmonic frequencies , for sinusoids with such frequencies are periodic.

In contrast, consider sinusoids whose frequencies are not fractions of $\pi$: $\begin{align*}x[n]&=e^{j(\omega n+ \phi)}\\ x[n+N]&=e^{j(\omega (n+N) + \phi)} \\&=e^{j(\omega n + \omega N + \phi)}\\&=e^{j(\omega n + \phi)} e^{j(\omega N)}\\&=e^{j(\omega n + \phi)}e^{j(\omega N)}\\&\neq x[n],\textrm{unless } \omega N=2\pi k \rightarrow \omega=2\pi\frac{k}{N}\end{align*}$ So we see that discrete-time sinusoids are periodic if, and only if, their frequencies are fractions of $2\pi$. Consider the example of a non-periodic sinusoid below. It definitely oscillates, and at first it appears to be periodic, but look carefully and you will see that it is not, unlike the one from the figure above.

Image
$x_2[n] = \cos(1.16 \, n)$. The frequency of 1.16 is not a fraction of $2\pi$, so this sinusoidal signal is not periodic.
Take note of sinusoids whose frequencies are of the form $\omega=2\pi\frac{k}{N}$, for they will play a starring role in the Fourier analysis of periodic and finite-length discrete-time signals.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete-time signals and systems' conversation and receive update notifications?

Ask