<< Chapter < Page Chapter >> Page >

Solution

The electric field strength at the origin due to q 1 size 12{q rSub { size 8{1} } } {} is labeled E 1 size 12{E rSub { size 8{1} } } {} and is calculated:

E 1 = k q 1 r 1 2 = 8 . 99 × 10 9 N m 2 /C 2 5 . 00 × 10 9 C 2 . 00 × 10 2 m 2 E 1 = 1 . 124 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{1} } =k { {q rSub { size 8{1} } } over {r rSub { size 8{1} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left (5 "." "00" times "10" rSup { size 8{ - 9} } C right )} over { left (2 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{1} } =1 "." "125" times "10" rSup { size 8{5} } "N/C" {} } } {}

Similarly, E 2 size 12{E rSub { size 8{2} } } {} is

E 2 = k q 2 r 2 2 = 8 . 99 × 10 9 N m 2 /C 2 10 . 0 × 10 9 C 4 . 00 × 10 2 m 2 E 2 = 0 . 5619 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{2} } =k { {q rSub { size 8{2} } } over {r rSub { size 8{2} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left ("10" "." 0 times "10" rSup { size 8{ - 9} } C right )} over { left (4 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{2} } =0 "." "5625" times "10" rSup { size 8{5} } "N/C" {} } } {}

Four digits have been retained in this solution to illustrate that E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the magnitude of E 2 size 12{E rSub { size 8{2} } } {} . Now arrows are drawn to represent the magnitudes and directions of E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} . (See [link] .) The direction of the electric field is that of the force on a positive charge so both arrows point directly away from the positive charges that create them. The arrow for E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the length of that for E 2 size 12{E rSub { size 8{2} } } {} . The arrows form a right triangle in this case and can be added using the Pythagorean theorem. The magnitude of the total field E tot size 12{E rSub { size 8{"tot"} } } {} is

E tot = ( E 1 2 + E 2 2 ) 1/2 = { ( 1.124 × 10 5 N/C ) 2 + ( 0.5619 × 10 5 N/C ) 2 } 1/2 = 1.26 × 10 5 N/C. alignl { stack { size 12{E rSub { size 8{ ital "tot"} } `= \( E rSub { size 8{1} } rSup { size 8{2} } `+`E rSub { size 8{2} } rSup { size 8{2} } \) rSup { size 8{ {1} wideslash {2} } } } {} #~``=` lbrace \( 1 "." "125" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } `+` \( 0 "." "5625" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } rbrace rSup { size 8{ {1} wideslash {2} } } {} # `~`=``1 "." "26" times "10" rSup { size 8{5} } `"N/C" {}} } {}

The direction is

θ = tan 1 E 1 E 2 = tan 1 1 . 124 × 10 5 N/C 0 . 5619 × 10 5 N/C = 63 . , alignl { stack { size 12{θ="tan" rSup { size 8{ - 1} } left ( { {E rSub { size 8{1} } } over {E rSub { size 8{2} } } } right )} {} #="tan" rSup { size 8{ - 1} } left lbrace { {1 "." "125" times "10" rSup { size 8{5} } " N/C"} over {0 "." "5625" times "10" rSup { size 8{5} } " N/C"} } right rbrace {} # ="63" "." 4° {}} } {}

or 63.4º above the x -axis.

Discussion

In cases where the electric field vectors to be added are not perpendicular, vector components or graphical techniques can be used. The total electric field found in this example is the total electric field at only one point in space. To find the total electric field due to these two charges over an entire region, the same technique must be repeated for each point in the region. This impossibly lengthy task (there are an infinite number of points in space) can be avoided by calculating the total field at representative points and using some of the unifying features noted next.

[link] shows how the electric field from two point charges can be drawn by finding the total field at representative points and drawing electric field lines consistent with those points. While the electric fields from multiple charges are more complex than those of single charges, some simple features are easily noticed.

For example, the field is weaker between like charges, as shown by the lines being farther apart in that region. (This is because the fields from each charge exert opposing forces on any charge placed between them.) (See [link] and [link] (a).) Furthermore, at a great distance from two like charges, the field becomes identical to the field from a single, larger charge.

[link] (b) shows the electric field of two unlike charges. The field is stronger between the charges. In that region, the fields from each charge are in the same direction, and so their strengths add. The field of two unlike charges is weak at large distances, because the fields of the individual charges are in opposite directions and so their strengths subtract. At very large distances, the field of two unlike charges looks like that of a smaller single charge.

Two charges q one and q two are placed at a distance and their field lines shown by curved arrows move away from each other. At a point P on the field lines emanating from q one, the resultant electric field is represented by a vector arrow tangent to the curve representing this field line. A point P prime on a field line emanating from the charge q two and the resultant electric field is represented by a vector arrow tangent to the curve representing this field line.
Two positive point charges q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} produce the resultant electric field shown. The field is calculated at representative points and then smooth field lines drawn following the rules outlined in the text.
In part a, two negative charges of magnitude minus q are placed at some distance. Their field lines are represented by curved arrows terminating into the negative charges. The curves are divergent. In part b, two charges are placed at a distance where one is positive labeled as plus q and other is negative labeled as minus q. The field lines represented by curved arrows start from the positive charge and end at the negative charge. The curves are convergent.
(a) Two negative charges produce the fields shown. It is very similar to the field produced by two positive charges, except that the directions are reversed. The field is clearly weaker between the charges. The individual forces on a test charge in that region are in opposite directions. (b) Two opposite charges produce the field shown, which is stronger in the region between the charges.

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask