<< Chapter < Page Chapter >> Page >
  • Determine derivatives and equations of tangents for parametric curves.
  • Find the area under a parametric curve.
  • Use the equation for arc length of a parametric curve.
  • Apply the formula for surface area to a volume generated by a parametric curve.

Now that we have introduced the concept of a parameterized curve, our next step is to learn how to work with this concept in the context of calculus. For example, if we know a parameterization of a given curve, is it possible to calculate the slope of a tangent line to the curve? How about the arc length of the curve? Or the area under the curve?

Another scenario: Suppose we would like to represent the location of a baseball after the ball leaves a pitcher’s hand. If the position of the baseball is represented by the plane curve ( x ( t ) , y ( t ) ) , then we should be able to use calculus to find the speed of the ball at any given time. Furthermore, we should be able to calculate just how far that ball has traveled as a function of time.

Derivatives of parametric equations

We start by asking how to calculate the slope of a line tangent to a parametric curve at a point. Consider the plane curve defined by the parametric equations

x ( t ) = 2 t + 3 , y ( t ) = 3 t 4 , −2 t 3 .

The graph of this curve appears in [link] . It is a line segment starting at ( −1 , −10 ) and ending at ( 9 , 5 ) .

A straight line from (−1, −10) to (9, 5). The point (−1, −10) is marked t = −2, the point (3, −4) is marked t = 0, and the point (9, 5) is marked t = 3. There are three equations marked: x(t) = 2t + 3, y(t) = 3t – 4, and −2 ≤ t ≤ 3
Graph of the line segment described by the given parametric equations.

We can eliminate the parameter by first solving the equation x ( t ) = 2 t + 3 for t :

x ( t ) = 2 t + 3 x 3 = 2 t t = x 3 2 .

Substituting this into y ( t ) , we obtain

y ( t ) = 3 t 4 y = 3 ( x 3 2 ) 4 y = 3 x 2 9 2 4 y = 3 x 2 17 2 .

The slope of this line is given by d y d x = 3 2 . Next we calculate x ( t ) and y ( t ) . This gives x ( t ) = 2 and y ( t ) = 3 . Notice that d y d x = d y / d t d x / d t = 3 2 . This is no coincidence, as outlined in the following theorem.

Derivative of parametric equations

Consider the plane curve defined by the parametric equations x = x ( t ) and y = y ( t ) . Suppose that x ( t ) and y ( t ) exist, and assume that x ( t ) 0 . Then the derivative d y d x is given by

d y d x = d y / d t d x / d t = y ( t ) x ( t ) .

Proof

This theorem can be proven using the Chain Rule. In particular, assume that the parameter t can be eliminated, yielding a differentiable function y = F ( x ) . Then y ( t ) = F ( x ( t ) ) . Differentiating both sides of this equation using the Chain Rule yields

y ( t ) = F ( x ( t ) ) x ( t ) ,

so

F ( x ( t ) ) = y ( t ) x ( t ) .

But F ( x ( t ) ) = d y d x , which proves the theorem.

[link] can be used to calculate derivatives of plane curves, as well as critical points. Recall that a critical point of a differentiable function y = f ( x ) is any point x = x 0 such that either f ( x 0 ) = 0 or f ( x 0 ) does not exist. [link] gives a formula for the slope of a tangent line to a curve defined parametrically regardless of whether the curve can be described by a function y = f ( x ) or not.

Finding the derivative of a parametric curve

Calculate the derivative d y d x for each of the following parametrically defined plane curves, and locate any critical points on their respective graphs.

  1. x ( t ) = t 2 3 , y ( t ) = 2 t 1 , −3 t 4
  2. x ( t ) = 2 t + 1 , y ( t ) = t 3 3 t + 4 , −2 t 5
  3. x ( t ) = 5 cos t , y ( t ) = 5 sin t , 0 t 2 π
  1. To apply [link] , first calculate x ( t ) and y ( t ) :
    x ( t ) = 2 t y ( t ) = 2.

    Next substitute these into the equation:
    d y d x = d y / d t d x / d t d y d x = 2 2 t d y d x = 1 t .

    This derivative is undefined when t = 0 . Calculating x ( 0 ) and y ( 0 ) gives x ( 0 ) = ( 0 ) 2 3 = −3 and y ( 0 ) = 2 ( 0 ) 1 = −1 , which corresponds to the point ( −3 , −1 ) on the graph. The graph of this curve is a parabola opening to the right, and the point ( −3 , −1 ) is its vertex as shown.
    A curved line going from (6, −7) through (−3, −1) to (13, 7) with arrow pointing in that order. The point (6, −7) is marked t = −3, the point (−3, −1) is marked t = 0, and the point (13, 7) is marked t = 4. On the graph there are also written three equations: x(t) = t2 − 3, y(t) = 2t − 1, and −3 ≤ t ≤ 4.
    Graph of the parabola described by parametric equations in part a.
  2. To apply [link] , first calculate x ( t ) and y ( t ) :
    x ( t ) = 2 y ( t ) = 3 t 2 3.

    Next substitute these into the equation:
    d y d x = d y / d t d x / d t d y d x = 3 t 2 3 2 .

    This derivative is zero when t = ±1 . When t = −1 we have
    x ( −1 ) = 2 ( −1 ) + 1 = −1 and y ( −1 ) = ( −1 ) 3 3 ( −1 ) + 4 = −1 + 3 + 4 = 6 ,

    which corresponds to the point ( −1 , 6 ) on the graph. When t = 1 we have
    x ( 1 ) = 2 ( 1 ) + 1 = 3 and y ( 1 ) = ( 1 ) 3 3 ( 1 ) + 4 = 1 3 + 4 = 2 ,

    which corresponds to the point ( 3 , 2 ) on the graph. The point ( 3 , 2 ) is a relative minimum and the point ( −1 , 6 ) is a relative maximum, as seen in the following graph.
    A vaguely sinusoidal curve going from (−3, 2) through (−1, 6) and (3, 2) to (5, 6). The point (−3, 2) is marked t = −2, the point (−1, 6) is marked t = −1, the point (3, 2) is marked t = 1, and the point (5, 6) is marked t = 2. On the graph there are also written three equations: x(t) = 2t + 1, y(t) = t3 – 3t + 4, and −2 ≤ t ≤ 2.
    Graph of the curve described by parametric equations in part b.
  3. To apply [link] , first calculate x ( t ) and y ( t ) :
    x ( t ) = −5 sin t y ( t ) = 5 cos t .

    Next substitute these into the equation:
    d y d x = d y / d t d x / d t d y d x = 5 cos t −5 sin t d y d x = cot t .

    This derivative is zero when cos t = 0 and is undefined when sin t = 0 . This gives t = 0 , π 2 , π , 3 π 2 , and 2 π as critical points for t. Substituting each of these into x ( t ) and y ( t ) , we obtain
    t x ( t ) y ( t )
    0 5 0
    π 2 0 5
    π −5 0
    3 π 2 0 −5
    2 π 5 0

    These points correspond to the sides, top, and bottom of the circle that is represented by the parametric equations ( [link] ). On the left and right edges of the circle, the derivative is undefined, and on the top and bottom, the derivative equals zero.
    A circle with radius 5 centered at the origin is graphed with arrow going counterclockwise. The point (5, 0) is marked t = 0, the point (0, 5) is marked t = π/2, the point (−5, 0) is marked t = π, and the point (0, −5) is marked t = 3π/2. On the graph there are also written three equations: x(t) = 5 cos(t), y(t) = 5 sin(t), and 0 ≤ t ≤ 2π.
    Graph of the curve described by parametric equations in part c.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

distinguish between anatomy and physiology
Amina Reply
Anatomy is the study of internal structure of an organism while physiology is the study of the function/relationship of the body organs working together as a system in an organism.
adeyeye
distinguish between anatomy and physiology
Erny Reply
regional anatomy is the study of the body regionally
Ismail Reply
what is the meaning of regional anatomy
Aminat Reply
epithelial tissue: it covers the Hollow organs and body cavities
Esomchi Reply
in short way what those epithelial tissue mean
Zainab Reply
in short way what those epithelial tissue mean
Chizoba
What is the function of the skeleton
Lilias Reply
movement
Ogar
Locomotion
Ojo
support
Aishat
and body shape/form
Aishat
what is homeostasis?
Samuel Reply
what's physiology
AminchiSunday Reply
what is physiology
AminchiSunday
physically is the study of the function of the body
Najaatu
that is what I want ask
YAU
u are wright
YAU
pls what are the main treatment of hiccups
YAU
physiology is the study of the function of the body
Najaatu
hiccups happen when something irritates the nerves that course your diaphragm to contract
Najaatu
how did hypothalamus manege to control all activities of the various hormones
malual
what is protein
Abdulsalam
how can I treat pain a patient feels after eating meals
Namuli Reply
how do I treat a three year old baby of skin infection?
Okocha Reply
It depends on the type of infection. Bacterial, fungal, parasitic or viral?
schler
if you can share the sign ad symptoms of the skin infection then u geh the treatment cox they're different sign ad symptoms of skin infection with different treatment
Sa
the sign and symptoms of maleria
Abdulsalam
prostaglandin and fever
Maha Reply
yes
rayyanu
welcome sir
rayyanu
prostaglandin E2 is the final mediator.
Lemlem
prostaglandin E2 is the final mediator of fever.
Lemlem
yes
Agabi
good evening
Jediel
tissue.
Akoi
explain
Chizoba
Hi
Anya
,good evening
Anya
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask