<< Chapter < Page Chapter >> Page >

When we cross from the small scale as in molecules and atoms, to the large scale that we see with our own eyes, we travel through the nanoscale. In that scale we go from quantum physics to classical physics and a lot of very interesting effects can be used to our benefit, and actually nanoparticles are an excellent example of this. Just by virtue of their size they are able to absorb four times more light than is even shone on them! This is very different from the bulk material, it is difficult to understand in one sitting, but let’s just say that there is a coupling between the light energy and the matter of the nanoparticles that is best explained through quantum mechanics, but we won’t go into that now.

When you make something very large, there is lots of room for error, the more parts you have in a system the more chances there are that some of those parts can be faulty. However when you make something in the nanoscale you have far less parts in the system and each part has to be virtually perfect. Material scientists are concerned with the defects that are created in materials, because these are the parts that cause a material to break down often and stop functioning correctly. As you get into the nanoscale there are less defects and you get enhanced effects from the purer material, that don’t occur on the larger scale. One example of this is carbon nanotubes, by virtue of there shape and size they are 6 times lighter than steel, but almost 100 times stronger. There is great potential for using these in new materials in the future that are ultra lightweight and extremely strong.

When we make things with modern technology we have for centuries been using a top down approach, and this brings us down to a fine limit but not as fine as that on which nature works. Nanotechnology is more about understanding the fundamental forces in nature by physics, and seeing their interaction through chemistry, and then making something larger from our engineering skills. And we can always take examples from biology that has been doing this for far longer than we have. So really what we do is take a bottom up approach, so that we can create large materials that we can use, that has every part of the interaction tailored all the way from how the atoms interact and how the molecules are formed and bonded together to make building blocks for new materials and applications. This bottom up approach is a change in the way things have been done and for this reason nanotechnology is a very potent discipline, with an immense capacity for expansion.

In all we have only really begun to scratch the surface of what could be possible when we create things using nanotechnology, and we should be aware of this because nanotechnology is finding its way into every corner of life, from health studies, medicine, robotics, materials and maybe even food and many many more.

What are nanoparticles and how are they made?

A simple way of seeing this is by imagining tennis balls that are squeezed down to a few billionths of a meter. The particles are rounded because they try to minimize the surface energy as much as possible; any edges will make things more energetic since typically nature follows the path of least resistance the particles tend to form colloids, or spheres with as few edges as possible. It is possible though, to direct the growth of nanoparticles into various shapes such as cubes, and tetrahedrons. We will concern ourselves with only colloidal nanoparticles for the moment.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask