<< Chapter < Page Chapter >> Page >
The Karplus-Strong algorithm plucked string algorithm produces remarkably realistic tones with modest computational effort. The algorithm requires a delay line and lowpass filter arranged in a closed loop, which can be implemented as a single digital filter. The filter is driven by a burst of white noise to initiate the sound of the plucked string. Learn about the Karplus-Strong algorithm and how to implement it as a LabVIEW "virtual musical instrument" (VMI) to be played from a MIDI file using "MIDI JamSession."
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Introduction

In 1983 Kevin Karplus and Alex Strong published an algorithm to emulate the sound of a plucked string (see "References" section). The Karplus-Strong algorithm produces remarkably realistic tones with modest computational effort.

As an example, consider the sound of a violin's four strings plucked in succession: violin_plucked.wav (compare to the same four strings bowed instead of plucked: violin_bowed.wav ). Now compare to the Karplus-Strong version of the same four pitches: ks_plucked.wav .

In this module, learn about the Karplus-Strong plucked string algorithm and how to create a LabVIEW virtual musical instrument (VMI) that you can "play" using a MIDI music file.

Karplus-strong algorithm

The screencast video develops the theory of the Karplus-Strong plucked string algorithm, which is based on a closed loop composed of a delay line and a low pass filter.As will be shown, the delay line is initialized with a noise burst, and the continuously circulating noise burst is filtered slightly on each pass through the loop. The output signal is therefore quasi-periodicwith a wideband noise-like transient converging to a narrowband signal composed of only a few sinusoidal harmonic components.

[video] Theory of the Karplus-Strong plucked string algorithm

Labview implementation

The Karplus-Strong algorithm block diagram may be viewed as a single digital filter that is excited by a noise pulse. For real-time implementation, the digital filter runs continuously withan input that is normally zero. The filter is "plucked" by applying a burst of white noise that is long enough to completely fill the delay line.

As an exercise, review the block diagram shown in and derive the difference equation that relates the overall output y(n) to the input x(n). Invest some effort inthis so that you can develop a better understanding of the algorithm. Watch the video solution in only after you have completed your own derivation.

[video] Difference equation for Karplus-Strong block diagram

The screencast video shows how to implement the difference equation as a digital filter and how to create the noise pulse. The video includes an audiodemonstration of the finished result.

[video] Building the Karplus-Strong block diagram in LabVIEW

Project activity: karplus-strong vmi

In order to better appreciate the musical qualities of the Karplus-Strong plucked string algorithm, convert the algorithm to a virtual musical instrument ( VMI for short) that can be played by "MIDI Jam Session." If necessary, visit MIDI Jam Session , download the application VI .zip file, and view the screencast video in that module to learn more about the application and how to create yourown virtual musical instrument. Your VMI will accept parameters that specify frequency, amplitude, and duration of a single note, and will produce a corresponding array ofaudio samples using the Karplus-Strong algorithm described in the previous section.

For best results, select a MIDI music file that contains a solo instrument or perhaps a duet. For example, try "Sonata in A Minor for Cello and Bass Continuo" by Antonio Vivaldi.A MIDI version of the sonata is available at the Classical Guitar MIDI Archives , specifically Vivaldi_Sonata_Cello_Bass.mid .

Try experimenting with the critical parameters of your instrument, including sampling frequency and the low-pass filter constant g MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@3633@ . Regarding sampling frequency: lower sampling frequencies influence the sound in two distinct ways -- can you describe each of these two ways?

References

  • Moore, F.R., "Elements of Computer Music," Prentice-Hall, 1990, ISBN 0-13-252552-6.
  • Karplus, K., and A. Strong, "Digital Synthesis of Plucked String and Drum Timbres," Computer Music Journal 7(2): 43-55, 1983.

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- subtractive synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10484/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- subtractive synthesis' conversation and receive update notifications?

Ask