<< Chapter < Page Chapter >> Page >

a 0 = 1 size 12{a rSup { size 8{0} } `=`1} {} , ( a 0 ) size 12{` \( a<>0 \) } {}

For example, x 0 = 1 and ( 1,000,000 ) 0 = 1 size 12{x rSup { size 8{0} } `=``1" and " \( "1,000,000" \) rSup { size 8{0} } `=``1} {} .

Note that the base must be a non-zero value. 0 0 is called an indeterminate number, and has no value. This is because 0 0 = 0/0. If one considers 0 = 0 × n (where n can be any number) then it follows that 0/0 = n , where n can be any number – meaning the value of 0/0 cannot be determined.

Examples: application using exponential law 1

  1. 16 0 = 1 size 12{"16" rSup { size 8{0} } =``1} {}
  2. 16 a 0 = 16 size 12{"16"a rSup { size 8{0} } =``"16"} {}
  3. ( 16 + a ) 0 = 1 size 12{ \( "16"+a \) rSup { size 8{0} } =``1} {}
  4. ( 16 ) 0 = 1 size 12{ \( - "16" \) rSup { size 8{0} } =``1} {}
  5. 16 0 = 1 size 12{ - "16" rSup { size 8{0} } =`` - 1} {}

Exponential law 2

Our definition of exponential notation shows that:

a m × a n = a m + n size 12{a rSup { size 8{m} } ` times `a rSup { size 8{n} } `=`a rSup { size 8{m+n} } } {}

That is:

a m a n = 1 a a size 12{a rSup { size 8{m} } cdot a rSup { size 8{n} } `=``1` cdot `a` cdot ` dotslow ` cdot `a } {}  ( m times) 1 a a size 12{` cdot `1` cdot `a` cdot ` dotslow ` cdot ` ital "a "} {}   ( n times)

             = 1 a a size 12{ {}= `1` cdot `a` cdot ` dotslow ` cdot `a" "``} {}     ( m + n times)

             = a m + n size 12{ {}= ital " a" rSup { size 8{m+n} } } {}

For example:

2 7 2 3 = ( 2 2 2 2 2 2 2 ) ( 2 2 2 ) = 2 10 = 2 7 + 3 alignl { stack { size 12{`2 rSup { size 8{7} } cdot 2 rSup { size 8{3} } = \( 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 \) ital " " \( 2 cdot 2 cdot 2 \) } {} #`= 2 rSup { size 8{"10"} } {} # `= 2 rSup { size 8{7+3} } {}} } {}

This simple law illustrates the reason exponentials were originally invented. In the days before calculators, all multiplication had to be done by hand with a pencil and a pad of paper. Multiplication takes a very long time to do and is very tedious. Adding numbers, however, is easy and quick. This law says that adding the exponents of two exponential numbers (of the same base) is the same as multiplying the two numbers together. This means that, for certain numbers, there is no need to actually multiply the numbers together in order to find their multiple. This saved mathematicians a lot of time.

Examples: application using exponential law 2

  1. x 2 x 5 = x 7 size 12{x rSup { size 8{2} } cdot x rSup { size 8{5} } = ital " x" rSup { size 8{7} } } {}
  2. 2x 3 y 5x 2 y 7 = 10 x 5 y 8 size 12{2x rSup { size 8{3} } y cdot 5x rSup { size 8{2} } y rSup { size 8{7} } = "10"x rSup { size 8{5} } y rSup { size 8{8} } } {}
  3. 2 3 2 4 = 2 7 size 12{2 rSup { size 8{3} } cdot 2 rSup { size 8{4} } = 2 rSup { size 8{7} } } {}    (Note that the base (2) stays the same.)
  4. 3 3 2a 3 2 = 3 2a + 3 size 12{3 cdot 3 rSup { size 8{2a} } cdot 3 rSup { size 8{2} } =3 rSup { size 8{2a+3} } } {}

Exponential law 3

a m ÷ a n = a m n size 12{a rSup { size 8{m} } `` div ``a rSup { size 8{n} } `=`a rSup { size 8{m - n} } } {}

We know from Law 2 that a m + n size 12{a rSup { size 8{m+n} } } {} is base a multiplied by itself m times plus a multiplied by itself n times. Law 3 extends this to the case where an exponent is negative.

a m a n = a a a a a a a a size 12{ { {a rSup { size 8{m} } } over {a rSup { size 8{n} } } } `=` { {`a cdot a cdot a` dotsaxis ` cdot a`} over {a cdot a cdot a` dotsaxis ` cdot a} } } {} ( m times ) ( n times ) size 12{ { {` \( m`"times" \) `} over { \( n`"times" \) } } } {}

By factoring out a n size 12{a rSup { size 8{n} } } {} from both numerator and denominator, we are left with

     = a a a a a a a a size 12{``=` { {`a cdot a cdot a dotsaxis cdot a`} over {`a cdot a cdot a dotsaxis cdot a`} } } {} ( m times ) ( n times ) size 12{ { {` \( m`"times" \) `} over { \( n`"times" \) } } } {} a a a a a a a a size 12{ { { - `a cdot a cdot a` dotsaxis cdot a} over { - `a cdot a cdot a` dotsaxis cdot a} } } {} ( n times ) ( n times ) size 12{ { {` \( n`"times" \) `} over { \( n`"times" \) } } } {}

     = a a a a size 12{``=`a cdot a cdot a dotsaxis cdot a`} {}    ( m n times)

     = a m n size 12{``=`a rSup { size 8{m - n} } } {}

For example,

2 7 ÷ 2 3 = 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 = 2 4 = 2 7 3 alignl { stack { size 12{`2 rSup { size 8{7} } div 2 rSup { size 8{3} } `=` { {2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2} over {2 cdot 2 cdot 2} } } {} #```````````=``2 cdot 2 cdot 2 cdot 2 {} # ```````````=``2 rSup { size 8{4} } {} #```````````=``2 rSup { size 8{7 - 3} } {} } } {}

Examples: exponential law 3

  1. a 6 a 2 = a 6 2 = a 4 size 12{ { {a rSup { size 8{6} } } over {a rSup { size 8{2} } } } `=`a rSup { size 8{6 - 2} } `=`a rSup { size 8{4} } } {}
  2. 3 2 3 6 = 3 2 6 = 3 4 = 1 3 4 size 12{ { {3 rSup { size 8{2} } } over {3 rSup { size 8{6} } } } ``=``3 rSup { size 8{2 - 6} } ``=``3 rSup { size 8{ - 4} } `=` { {1} over {3 rSup { size 8{4} } } } ```} {}    (Always give the final answer with a positive index)
  3. 32 a 2 4a 8 = 8a 6 = 8 a 6 size 12{ { {"32"a rSup { size 8{2} } } over {4a rSup { size 8{8} } } } `=`8a rSup { size 8{ - 6} } `=` { {8} over {a rSup { size 8{6} } } } } {}
  4. a 3x a 4 = a 3x 4 size 12{ { {a rSup { size 8{3x} } } over {a rSup { size 8{4} } } } `=`a rSup { size 8{3x - 4} } } {}

Exponential law 4

a n = 1 a n , a 0 size 12{a rSup { size 8{ - n} } `= { {1} over {a rSup { size 8{n} } } } ,~`a<>0} {}

Our definition of exponential notation for a negative exponent shows that

a n = 1 ÷ a ÷ ÷ a size 12{a rSup { size 8{ - n} } `=`1` div `a` div ` dotsaxis ` div `a} {}    ( n times)

       = 1 1 a a size 12{ {}=` { {1} over {1` cdot `a` cdot ` dotsaxis ` cdot `a} } } {} ( n times ) size 12{ { {``} over { \( n`"times" \) } } } {}  

       = 1 a n size 12{ {}=` { {1} over {a rSup { size 8{n} } } } } {}

The minus sign in the exponent is just another way of writing that the whole exponential number is to be divided instead of multiplied.

For example, starting with Law 3, take the case of a m n size 12{a rSup { size 8{m - n} } } {} , but where  n>m :

2 2 9 = 2 2 2 9 = 2 2 2 2 2 2 2 2 2 2 2 = 1 2 2 2 2 2 2 2 = 1 2 7 = 2 7 alignl { stack { size 12{`2 rSup { size 8{2 - 9} } `=` { {2 rSup { size 8{2} } } over {2 rSup { size 8{9} } } } `} {} #```````=` { {2` cdot `2} over {2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2} } {} # ```````= { {1} over {2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2} } {} #```````= { {1} over {2 rSup { size 8{7} } } } {} # ```````=`2 rSup { size 8{ - 7} } {}} } {}

Examples: exponential law 4

  1. 2 2 = 1 2 2 = 1 4 size 12{2 rSup { size 8{ - 2} } = { {1} over {2 rSup { size 8{2} } } } = { {1} over {4} } } {}
  2. 2 2 3 2 = 1 2 2 3 2 = 1 36 size 12{ { {2 rSup { size 8{ - 2} } } over {3 rSup { size 8{2} } } } = { {1} over {2 rSup { size 8{2} } cdot 3 rSup { size 8{2} } } } = { {1} over {"36"} } } {}
  3. 2 3 3 = 3 2 3 = 27 8 size 12{ left ( { {2} over {3} } right ) rSup { size 8{ - 3} } = left ( { {3} over {2} } right ) rSup { size 8{3} } = { {"27"} over {8} } } {}
  4. m n 4 = mn 4 size 12{ { {m} over {n rSup { size 8{ - 4} } } } = ital "mn" rSup { size 8{4} } } {}
  5. a 3 x 4 a 5 x 2 = x 4 x 2 a 3 a 5 = x 6 a 8 size 12{ { {a rSup { size 8{ - 3} } cdot x rSup { size 8{4} } } over {a rSup { size 8{5} } cdot x rSup { size 8{ - 2} } } } = { {x rSup { size 8{4} } cdot x rSup { size 8{2} } } over {a rSup { size 8{3} } cdot a rSup { size 8{5} } } } = { {x rSup { size 8{6} } } over {a rSup { size 8{8} } } } } {}

Exponential law 5

( ab ) n = a n b n size 12{ \( ital "ab" \) rSup { size 8{n} } `=`a rSup { size 8{n} } b rSup { size 8{n} } } {}

The order in which two real numbers are multiplied together does not matter.

Therefore,

( ab ) n = a b a b a b a b size 12{ \( ital "ab" \) rSup { size 8{n} } `=``a cdot b cdot a cdot b cdot a cdot b cdot `` dotsaxis ` cdot `a cdot b} {}     ( n times)

         = a a a size 12{`=``a` cdot `a` cdot ` dotslow ` cdot `a} {}  ( n times) b b b size 12{` cdot `b` cdot `b` cdot ` dotslow ` cdot `b} {}  ( n times)

          = a n b n size 12{ {}=``a rSup { size 8{n} } b rSup { size 8{n} } } {}

For example:

2 3 4 = ( 2 3 ) ( 2 3 ) ( 2 3 ) ( 2 3 ) = ( 2 2 2 2 ) ( 3 3 3 3 ) = 2 4 3 4 = 2 4 3 4 alignl { stack { size 12{`2` cdot 3 rSup { size 8{4} } = \( 2 cdot 3 \) cdot \( 2 cdot 3 \) cdot \( 2 cdot 3 \) cdot \( 2 cdot 3 \) } {} #`=`` \( 2 cdot 2 cdot 2 cdot 2 \) ` cdot ` \( 3 cdot 3 cdot 3 cdot 3 \) {} # `= 2 rSup { size 8{4} } ` cdot `3 rSup { size 8{4} } {} #`= 2 rSup { size 8{4} } 3 rSup { size 8{4} } {} } } {}

Examples: exponential law 5

  1. ( 2x 2 y ) 3 = 2 3 x 2 × 3 y 3 = 8x 6 y 3 size 12{ \( 2x rSup { size 8{2} } y \) rSup { size 8{3} } `=`2 rSup { size 8{3} } x rSup { size 8{2 times 3} } y rSup { size 8{3} } `=`8x rSup { size 8{6} } y rSup { size 8{3} } } {}
  2. 7a b 3 2 = 49 a 2 b 6 size 12{ left ( { {7a} over {b rSup { size 8{3} } } } right )` rSup { size 8{2} } `=`` { {"49"a rSup { size 8{2} } } over {b rSup { size 8{6} } } } `} {}
  3. ( 5a n 4 ) 3 = 125 a 3n 12 size 12{ \( 5a rSup { size 8{n - 4} } \) rSup { size 8{3} } `=`"125"a rSup { size 8{3n - "12"} } } {}

Exponential law 6

( a m ) n = a mn size 12{ \( a rSup { size 8{m} } \) rSup { size 8{n} } =a rSup { size 8{ ital "mn"} } } {}

We can find the exponential of an exponential just as well as we can for a number, because an exponential is a real number.

( a m ) n = a m a m a m a m size 12{ \( a rSup { size 8{m} } \) rSup { size 8{n} } `=``a rSup { size 8{m} } ` cdot `a rSup { size 8{m} } ` cdot a rSup { size 8{m} } ` cdot `` dotslow ` cdot `a rSup { size 8{m} } } {}     ( n times)

         = a a a size 12{`=``a cdot a cdot dotslow cdot ital "a " } {}       ( m × n times)

          = a mn size 12{ {}= ital " a" rSup { size 8{ ital "mn"} } } {}

For example:

( 2 2 ) 3 = ( 2 2 ) ( 2 2 ) ( 2 2 ) = ( 2 2 ) ( 2 2 ) ( 2 2 ) = 2 6 = 2 2 × 3 alignl { stack { size 12{`` \( 2 rSup { size 8{2} } \) rSup { size 8{3} } = \( 2 rSup { size 8{2} } \) cdot \( 2 rSup { size 8{2} } \) cdot \( 2 rSup { size 8{2} } \) } {} #``````````=`` \( 2 cdot 2 \) ` cdot ` \( 2 cdot 2 \) ` cdot ` \( 2 cdot 2 \) {} # ``````````= 2 rSup { size 8{6} } {} #``````````= 2 rSup { size 8{2 times 3} } {} } } {}

Examples: exponential law 6

  1. ( x 3 ) 4 = x 12 size 12{ \( x rSup { size 8{3} } \) rSup { size 8{4} } `=`x rSup { size 8{"12"} } } {}
  2. [ ( a 4 ) 3 ] 2 = a 24 size 12{ \[ \( a rSup { size 8{4} } \) rSup { size 8{3} } \] rSup { size 8{2} } `=``a rSup { size 8{"24"} } } {}
  3. ( 3 n + 3 ) 2 = 3 2n + 6 size 12{ \( 3 rSup { size 8{n+3} } \) rSup { size 8{2} } `=`3 rSup { size 8{2n+6} } } {}

Module review exercises

Write the following examples using exponential notation.

4 4 size 12{4` cdot `4} {}

4 2

Got questions? Get instant answers now!

12 12 size 12{"12"` cdot `"12"} {}

12 2

Got questions? Get instant answers now!

9 9 9 9 size 12{9` cdot `9` cdot `9` cdot `9} {}

9 4

Got questions? Get instant answers now!

10 10 10 10 10 10 size 12{"10"` cdot `"10"` cdot `"10"` cdot `"10"` cdot `"10"` cdot `"10"} {}

10 6

Got questions? Get instant answers now!

826 826 826 size 12{"826"` cdot `"826"` cdot `"826"} {}

826 3

Got questions? Get instant answers now!

3021 3021 3021 3021 size 12{"3021"` cdot `"3021"` cdot `"3021" cdot `"3021"} {}

3021 4

Got questions? Get instant answers now!

6 6 6 6 size 12{6` cdot `6` cdot `6` cdot dotsaxis ` cdot `6} {}     (85 factors of 6).

6 85

Got questions? Get instant answers now!

2 2 2 2 size 12{`2` cdot `2` cdot `2` cdot ` dotsaxis ` cdot `2} {}     (112 factors of 2).

2 112

Got questions? Get instant answers now!

For the next examples, expand the terms. (Do not find the actual values).

117 5

117 · 117 · 117 · 117 · 117

Got questions? Get instant answers now!

Determine the value of each of the powers.

Simplify as far as possible.

(2x) 3

2 3 · x 3 = 8x 3

Got questions? Get instant answers now!

(-2x) 3

(-2) 3 · x 3 = -8x 3

Got questions? Get instant answers now!

x 8 x 3 size 12{ { {x rSup { size 8{8} } } over {x rSup { size 8{3} } } } } {}

x 8 3 = x 5 size 12{`x rSup { size 8{8 - 3} } `=`x rSup { size 8{5} } } {}

Got questions? Get instant answers now!

25 x 2 5x 8 size 12{` { {"25"x rSup { size 8{2} } } over {5x rSup { size 8{8} } } } } {}

25 5 x 2 8 = 5x 6 = 5 x 6 size 12{` { {"25"} over {5} } x rSup { size 8{2 - 8} } `=`5x rSup { size 8{ - 6} } `=` { {5} over {x rSup { size 8{6} } } } } {}

Got questions? Get instant answers now!

(3 -1 +2 -1 ) -1

1 3 1 + 2 1 = 1 1 3 + 1 2 = 1 3 1 + 2 1 = 3 + 2 = 5 size 12{` { {1} over {3 rSup { size 8{ - 1} } `+`2 rSup { size 8{ - 1} } } } `=` { {1} over { { {1} over {3} } `+` { {1} over {2} } } } `=`1` cdot ` left ( { {3} over {1} } `+` { {2} over {1} } right )`=`3`+`2`=`5} {}

Got questions? Get instant answers now!

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic math textbook for the community college. OpenStax CNX. Jul 04, 2009 Download for free at http://cnx.org/content/col10726/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic math textbook for the community college' conversation and receive update notifications?

Ask