<< Chapter < Page Chapter >> Page >
  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of change of a function. These applications include acceleration    and velocity in physics, population growth rates in biology, and marginal functions in economics.

Amount of change formula

One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at some given point together with its rate of change at the given point. If f ( x ) is a function defined on an interval [ a , a + h ] , then the amount of change    of f ( x ) over the interval is the change in the y values of the function over that interval and is given by

f ( a + h ) f ( a ) .

The average rate of change    of the function f over that same interval is the ratio of the amount of change over that interval to the corresponding change in the x values. It is given by

f ( a + h ) f ( a ) h .

As we already know, the instantaneous rate of change of f ( x ) at a is its derivative

f ( a ) = lim h 0 f ( a + h ) f ( a ) h .

For small enough values of h , f ( a ) f ( a + h ) f ( a ) h . We can then solve for f ( a + h ) to get the amount of change formula:

f ( a + h ) f ( a ) + f ( a ) h .

We can use this formula if we know only f ( a ) and f ( a ) and wish to estimate the value of f ( a + h ) . For example, we may use the current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in [link] , we are approximating f ( a + h ) by the y coordinate at a + h on the line tangent to f ( x ) at x = a . Observe that the accuracy of this estimate depends on the value of h as well as the value of f ( a ) .

On the Cartesian coordinate plane with a and a + h marked on the x axis, the function f is graphed. It passes through (a, f(a)) and (a + h, f(a + h)). A straight line is drawn through (a, f(a)) with its slope being the derivative at that point. This straight line passes through (a + h, f(a) + f’(a)h). There is a line segment connecting (a + h, f(a + h)) and (a + h, f(a) + f’(a)h), and it is marked that this is the error in using f(a) + f’(a)h to estimate f(a + h).
The new value of a changed quantity equals the original value plus the rate of change times the interval of change: f ( a + h ) f ( a ) + f ( a ) h.

Here is an interesting demonstration of rate of change.

Estimating the value of a function

If f ( 3 ) = 2 and f ( 3 ) = 5 , estimate f ( 3.2 ) .

Begin by finding h . We have h = 3.2 3 = 0.2 . Thus,

f ( 3.2 ) = f ( 3 + 0.2 ) f ( 3 ) + ( 0.2 ) f ( 3 ) = 2 + 0.2 ( 5 ) = 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given f ( 10 ) = −5 and f ( 10 ) = 6 , estimate f ( 10.1 ) .

−4.4

Got questions? Get instant answers now!

Motion along a line

Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce the idea of speed    , which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Definition

Let s ( t ) be a function giving the position of an object at time t .

The velocity of the object at time t is given by v ( t ) = s ( t ) .

The speed of the object at time t is given by | v ( t ) | .

The acceleration of the object at t is given by a ( t ) = v ( t ) = s ( t ) .

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask