<< Chapter < Page Chapter >> Page >
  • Describe the epsilon-delta definition of a limit.
  • Apply the epsilon-delta definition to find the limit of a function.
  • Describe the epsilon-delta definitions of one-sided limits and infinite limits.
  • Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying closeness

Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between two points a and b on a number line is given by | a b | .

  • The statement | f ( x ) L | < ε may be interpreted as: The distance between f ( x ) and L is less than ε.
  • The statement 0 < | x a | < δ may be interpreted as: x a and the distance between x and a is less than δ.

It is also important to look at the following equivalences for absolute value:

  • The statement | f ( x ) L | < ε is equivalent to the statement L ε < f ( x ) < L + ε .
  • The statement 0 < | x a | < δ is equivalent to the statement a δ < x < a + δ and x a .

With these clarifications, we can state the formal epsilon-delta definition of the limit    .

Definition

Let f ( x ) be defined for all x a over an open interval containing a . Let L be a real number. Then

lim x a f ( x ) = L

if, for every ε > 0 , there exists a δ > 0 , such that if 0 < | x a | < δ , then | f ( x ) L | < ε .

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every ε > 0 ), an existential quantifier (there exists a δ > 0 ), and, last, a conditional statement (if 0 < | x a | < δ , then | f ( x ) L | < ε ). Let’s take a look at [link] , which breaks down the definition and translates each part.

Translation of the epsilon-delta definition of the limit
Definition Translation
1. For every ε > 0 , 1. For every positive distance ε from L ,
2. there exists a δ > 0 , 2. There is a positive distance δ from a ,
3. such that 3. such that
4. if 0 < | x a | < δ , then | f ( x ) L | < ε . 4. if x is closer than δ to a and x a , then f ( x ) is closer than ε to L .

We can get a better handle on this definition by looking at the definition geometrically. [link] shows possible values of δ for various choices of ε > 0 for a given function f ( x ) , a number a , and a limit L at a . Notice that as we choose smaller values of ε (the distance between the function and the limit), we can always find a δ small enough so that if we have chosen an x value within δ of a , then the value of f ( x ) is within ε of the limit L .

There are three graphs side by side showing possible values of delta, given successively smaller choices of epsilon. Each graph has a decreasing, concave down curve in quadrant one. Each graph has the point (a, L) marked on the curve, where L is the limit of the function at the point where x=a. On either side of L on the y axis, a distance epsilon is marked off  - namely, a line is drawn through the function at y = L + epsilon and L – epsilon. As smaller values of epsilon are chosen going from graph one to graph three, smaller values of delta to the left and right of point a can be found so that if we have chosen an x value within delta of a, then the value of f(x) is within epsilon of the limit L.
These graphs show possible values of δ , given successively smaller choices of ε .

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask