<< Chapter < Page Chapter >> Page >
1 t = 1 t a + 1 t b size 12{ { {1} over {t} } = { {1} over {t rSub { size 8{a} } } } + { {1} over {t rSub { size 8{b} } } } } {}

For reference, the exact lineshape function (assuming two equivalent groups being exchanged) is given by the Bloch Equation, [link] , where g is the intensity at frequency v , and where K is a normalization constant

g ( v ) = Kt ( v a + v b ) 2 [ 0 . 5 ( v a + v b ) v ] 2 + 2 t 2 ( v a v ) 2 ( v b v ) 2 size 12{g \( v \) = { { ital "Kt" \( v rSub { size 8{a} } +v rSub { size 8{b} } \) rSup { size 8{2} } } over { \[ 0 "." 5 \( v rSub { size 8{a} } +v rSub { size 8{b} } \) -v \] rSup { size 8{2} } +4p rSup { size 8{2} } t rSup { size 8{2} } \( v rSub { size 8{a} } -v \) rSup { size 8{2} } \( v rSub { size 8{b} } -v \) rSup { size 8{2} } } } } {}

Low temperatures to coalescence temperature

At low temperature (slow exchange), the spectrum has two peaks and Δ v >>t. As a result, [link] reduces to [link] , where T 2a’ is the spin-spin relaxation time. The linewidth of the peak for species a is defined by [link] .

g ( v ) a = g ( v ) b = KT 2a 1 + T 2a 2 ( v a v ) 2 size 12{g \( v \) rSub { size 8{a} } =g \( v \) rSub { size 8{b} } = { { ital "KT" rSub { size 8{2a} } } over {1+T rSub { size 8{2a} rSup { size 8{2} } } \( v rSub { size 8{a} } -v \) rSup { size 8{2} } } } } {}
( Δv a ) 1 / 2 = 1 π ( 1 T 2a + 1 t a ) size 12{ \( Dv rSub { size 8{a} } \) rSub { size 8{1/2} } = { {1} over {p} } \( { {1} over {T rSub { size 8{2a} } } } + { {1} over {t rSub { size 8{a} } } } \) } {}

Because the spin-spin relaxation time is difficult to determine, especially in inhomogeneous environments, rate constants at higher temperatures but before coalescence are preferable and more reliable.

The rate constant k can then be determined by comparing the linewidth of a peak with no exchange (low temp) with the linewidth of the peak with little exchange using [link] , where subscript e refers to the peak in the slightly higher temperature spectrum and subscript 0 refers to the peak in the no exchange spectrum.

k = π 2 [ ( Δv e ) 1 / 2 ( Δv 0 ) 1 / 2 ] size 12{k= { {p} over { sqrt {2} } } \[ \( Dv rSub { size 8{e} } \) rSub { size 8{1/2} } - \( Dv rSub { size 8{0} } \) rSub { size 8{1/2} } \] } {}

Additionally, k can be determined from the difference in frequency (chemical shift) using [link] , where Δ v 0 is the chemical shift difference in Hz at the no exchange temperature and Δ v e is the chemical shift difference at the exchange temperature.

k = π 2 ( Δv 0 2 Δv e 2 ) size 12{k= { {p} over { sqrt {2} } } \( Dv rSub { size 8{0} rSup { size 8{2} } } -Dv rSub { size 8{e} rSup { size 8{2} } } \) } {}

The intensity ratio method, [link] , can be used to determine the rate constant for spectra whose peaks have begun to merge, where r is the ratio between the maximum intensity and the minimum intensity, of the merging peaks, I max /I min

k = π 2 ( r + ( r 2 r ) 1 / 2 ) 1 / 2 size 12{k= { {p} over { sqrt {2} } } \( r+ \( r rSup { size 8{2} } -r \) rSup { size 8{1/2} } \) rSup { size 8{-1/2} } } {}

As mentioned earlier, the coalescence temperature, T c is the temperature at which the two peaks corresponding to the interchanging groups merge into one broad peak and [link] may be used to calculate the rate at coalescence.

k = πΔv 0 2 size 12{k= { {pDv rSub { size 8{0} } } over { sqrt {2} } } } {}

Higher temperatures

Beyond the coalescence temperature, interchange is so rapid (k>>t) that the spectrometer registers the two groups as equivalent and as one peak. At temperatures greater than that of coalescence, the lineshape equation reduces to [link] .

g ( v ) = KT 2 [ 1 + πT 2 ( v a + v b 2v ) 2 ] size 12{g \( v \) = { { ital "KT" rSub { size 8{2} } } over { \[ 1+pT rSub { size 8{2} } \( v rSub { size 8{a} } +v rSub { size 8{b} } -2v \) rSup { size 8{2} } \] } } } {}

As mentioned earlier, determination of T 2 is very time consuming and often unreliable due to inhomogeneity of the sample and of the magnetic field. The following approximation ( [link] ) applies to spectra whose signal has not completely fallen (in their coalescence).

k = 0 . Δv 2 ( Δv e ) 1 / 2 ( Δv 0 ) 1 / 2 size 12{k= { {0 "." 5pDv rSup { size 8{2} } } over { \( Dv rSub { size 8{e} } \) rSub { size 8{1/2} } - \( Dv rSub { size 8{0} } \) rSub { size 8{1/2} } } } } {}

Now that the rate constants have been extracted from the spectra, energetic parameters may now be calculated. For a rough measure of the activation parameters, only the spectra at no exchange and coalescence are needed. The coalescence temperature is determined from the NMR experiment, and the rate of exchange at coalescence is given by [link] . The activation parameters can then be determined from the Eyring equation ( [link] ), where k B is the Boltzmann constant, and where ΔH - TΔS = ΔG .

ln ( k T ) = ΔH RT ΔS R + ln ( k B h ) size 12{"ln" \( { {k} over {T} } \) = { {DH rSup { size 8{³} } } over { ital "RT"} } - { {DS rSup { size 8{³} } } over {R} } +"ln" \( { {k rSub { size 8{B} } } over {h} } \) } {}

For more accurate calculations of the energetics, the rates at different temperatures need to be obtained. A plot of ln(k/T) versus 1/T (where T is the temperature at which the spectrum was taken) will yield ΔH , ΔS , and ΔG . For a pictorial representation of these concepts, see [link] .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask