<< Chapter < Page Chapter >> Page >

Please follow along with the video and create your own version of the comb filter in LabVIEW. Refer to TripleDisplay to install the front-panel indicator used to view the signal spectrum.

[video] Implementing the comb filter in LabVIEW; exploration of the impulse response as a function of delay line length and feedback gain

Loop time and reverb time

As you have learned in previous sections, the comb filter behavior is determined by the delay line length N and the feedback coefficient g. From a user's point of view, however, these two parameters are not very intuitive. Instead, the comb filter behavior is normally specified by loop time τ MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@3701@ and reverb time denoted T 60 MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaaI2aGaaGimaaqabaaaaa@37BB@ . Reverb time may also be written as R T 60 MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGubGaaGOnaiaaicdaaeqaaaaa@3892@ . Loop time indicates the amount of time necessary for a given sample to pass through the delay line, and is therefore the delay line length N times the sampling interval. The sampling interval is the reciprocal of sampling frequency, so the loop time may be expressed as in :

τ = N f S MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaeyypa0ZaaSaaaeaacaWGobaabaGaamOzamaaBaaaleaacaWGtbaabeaaaaaaaa@3AD8@

Reverb time indicates the amount of time required for the reverberant signal's intensity to drop by 60 dB (dB = decibels), effectively to silence. Recall from the video that the comb filter's impulse response looks like a series of decaying impulses spaced by a delay of N samples; this impulse response is plotted in with the independent axis measured in time rather than samples.

Comb filter impulse response

Take a few minutes to derive an equation for the comb filter feedback gain "g" as a function of the loop time and the reverb time. The following pair of exercises guide you through the derivation.

Given the comb filter impulse response pictured in , derive an equation for the reverb time T 60 MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaaI2aGaaGimaaqabaaaaa@37BB@ in terms of the loop time τ MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@3701@ and the comb filter's feedback constant g. Hint: Recall the basic equation to express the ratio of two amplitudes in decibels, i.e., use the form with a factor of 20.

T 60 = 3 τ log 10 g MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaaI2aGaaGimaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaaiodacqaHepaDaeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaam4zaaaaaaa@41B0@

Based on your previous derivation, develop an equation for the comb filter gain "g" in terms of the desired loop time and reverb time.

g = 10 3 τ T 60 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaigdacaaIWaWaaWbaaSqabeaacqGHsisldaWcaaqaaiaaiodacqaHepaDaeaacaWGubWaaSbaaWqaaiaaiAdacaaIWaaabeaaaaaaaaaa@3ECE@

To finish up, derive the equation for the comb filter delay "N" in terms of the desired loop time.

N = τ f S MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iabes8a0jaadAgadaWgaaWcbaGaam4uaaqabaaaaa@3AC8@

Now, return to your own comb filter VI and modify the front-panel controls and LabVIEW MathScript node to use loop time and reverb time as the primary user inputs. Experiment with your modified system to ensure that the spacing between impulses does indeed match the specified loop time, and that the impulse decay rate makessense for the specified reverb time.

Comb filter implementation for audio signals

In this section, learn how to build a comb filter in LabVIEW that can process an audio signal, specifically, an impulse source. Follow along with the screencast video to create your own VI. The video includes anaudio demonstration of the finished result. As a bonus, the video also explains where the "comb filter" gets its name.

[video] Building a LabVIEW VI of a comb filter that can process an audio signal

Next, learn how you can replace the impulse source with an audio .wav file. Speech makes a good test signal, and the screencast video shows how to modify your VI to use a .wav audio file as the signal source. The speech clip used as an example in the video is availablehere: speech.wav (audio courtesy of the Open Speech Repository, www.voiptroubleshooter.com/open_speech ; the sentences are two of the many phonetically balanced Harvard Sentences , an important standard for the speech processing community).

[video] Modifying the LabVIEW VI of a comb filter to process a .wav audio signal

References

  • Moore, F.R., "Elements of Computer Music," Prentice-Hall, 1990, ISBN 0-13-252552-6.
  • Dodge, C., and T.A. Jerse, "Computer Music: Synthesis, Composition, and Performance," 2nd ed., Schirmer Books, 1997, ISBN 0-02-864682-7.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview (all modules). OpenStax CNX. Jan 05, 2010 Download for free at http://cnx.org/content/col10507/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview (all modules)' conversation and receive update notifications?

Ask