<< Chapter < Page Chapter >> Page >

How much energy does a photon contain? This is revealed by looking at [link] (d), which shows that the kinetic energy of the ejected electrons increases in direct proportion to the frequency provided that the frequency is above the threshold. We can conclude that the light supplies energy to the electron, which is proportional to the light frequency, so the energy of each photon is proportional to the frequency of the light. This now accounts for the observation that the frequency of the light source must be above the threshold frequency. For a photon to dislodge a photoelectron, it must have sufficient energy, by itself, to supply to the electron to overcome its attraction to the metal. It does not get any help from other photons, just like a single ping-pong ball acts alone against the wall. Since each photon must have sufficient energy and since the energy is proportional to the frequency, then each photon must be of a sufficient minimum frequency.

Increasing the intensity of the light certainly must increase the total energy of the light, since we observe this in everyday life. This means that the intensity of the light is proportional to the number of photons in the light but not the energy of each individual photon. Therefore, if the frequency of the light is too low, the photon energy is too low to eject an electron. Think again of the analogy: we can say that a single bowling bowl can accomplish what many ping-pong balls cannot, and a single high frequency photon can accomplish what many low frequency photons cannot.

The important conclusion for our purposes is that light energy is “quantized” into packets of energy. The amount of energy in each photon is proportional to the frequency of the light. Einstein first provided these conclusions, along with the equation which gives the energy of a photon of frequency ν

E = h ν

where h is a constant called Planck’s constant.

Observation 3: quantum energy levels in hydrogen atoms

Observation 1 showed us that only certain frequencies of light are emitted by hydrogen atoms. Observation 2 showed us that the energy of light is quantized into photons, or packets of energy, whose energy is proportional to the frequency of the light ν . We can now think about combining these two observations into a single observation about the hydrogen atom. When a hydrogen atom emits light, it must be emitting a photon of energy and is therefore losing energy. A hydrogen atom consists only of a nucleus and a single electron moving about that nucleus. The simplest (and perhaps only) way for the hydrogen atom to lose energy is for the electron to lose some of its energy. Therefore, when a hydrogen atom emits radiation of a certain frequency, it is emitting a photon of a specific energy, and therefore, the electron loses that same very specific energy.

In the spectrum of hydrogen, only certain frequencies are emitted. That means that only certain amounts of energy loss are possible for the electron in a hydrogen atom. How can this be? Why can’t an electron in a hydrogen atom lose any amount of energy? The answer becomes clearer by thinking of an analogy, in this case of walking down a staircase or walking down a ramp. When you walk down a ramp, you can change your elevation by any amount you choose. When you walk down a staircase, you can only change your elevation by fixed amounts determined by the fixed heights of the steps and the difference in heights of those steps. The energy of an electron is like the height of each step on a staircase, not like the height on a ramp, since the energy can only be changed by certain specific amounts. This means that the energy of an electron in a hydrogen atom can only be certain specific values, called “energy levels.” In other words, the energy of a hydrogen atom is “quantized.”

The Rydberg equation tells us what these energy levels are. Recall that every frequency emitted by a hydrogen atom is predicted by the simple equation:

ν = R × 1 n 2 1 m 2 size 12{ν=R times left ( { {1} over {n rSup { size 8{2} } } } - { {1} over {m rSup { size 8{2} } } } " " right ) } {}

Each emitted frequency must correspond to a certain energy h ν , and this energy must be the energy lost by the electron. This energy must therefore be the difference between two electron energy levels in the hydrogen atom. Let’s label the energy the electron starts with as E m , where m is just an index that tells us where the electron starts. Similarly, let’s label the energy the electron finishes with as E n , where n is just a different index. The electron loses energy equal to E m – E n , and this must equal the photon energy emitted:

h ν = E m - E n

We should be able to compare these two equations, since both contain a difference between two quantities that depend on two indices, m and n . Each energy of the electron might be given by an index n as

E n = h × R × 1 n 2 size 12{E rSub { size 8{n} } = - h times R times { {1} over {n rSup { size 8{2} } } } } {}

If so, then the energy lost by an electron in the second equation above would be

E m -E n = h × R × 1 m 2 1 n 2 = size 12{E rSub { size 8{m} } "-E" rSub { size 8{n} } = - h times R times left ( { {1} over {m rSup { size 8{2} } } } - { {1} over {n rSup { size 8{2} } } } right )=hν} {}

This equation is the same as the Rydberg equation found experimentally. Therefore, we can conclude that, in a hydrogen atom, the energy of an electron can only be certain values given by an integer index n and equal to

E n = h × R × 1 n 2 size 12{E rSub { size 8{n} } = - h times R times { {1} over {n rSup { size 8{2} } } } } {}

This means that the electron in a hydrogen atom can only exist in certain states with certain energies. These states must therefore determine the motion of the electron in the atom. Interestingly, this state of the electron is characterized by an integer, n , which we will now call a “quantum number” since it completely determines the quantized energy of the electron.

This discussion has only been about the hydrogen atom. These results also apply generally to all atoms, since all atoms display only specific frequencies which they emit or absorb. Since only certain frequencies can be emitted by each atom, only certain energy losses are possible, and only certain energy levels are possible in each atom. However, the equation above applies only to the energy of a hydrogen atom, since the Rydberg equation only describes the experimental spectrum of a hydrogen atom.

Review and discussion questions

  1. The photoelectric effect demonstrates that radiation energy is quantized into “packets” or photons. Explain how and why this observation is of significance in understanding the structure of atoms.
  2. Explain how we can know that higher frequency light contains higher energy photons.

By John S. Hutchinson, Rice University, 2011

Questions & Answers

how do I treat a three year old baby of skin infection?
Okocha Reply
It depends on the type of infection. Bacterial, fungal, parasitic or viral?
schler
if you can share the sign ad symptoms of the skin infection then u geh the treatment cox they're different sign ad symptoms of skin infection with different treatment
Sa
prostaglandin and fever
Maha Reply
yes
rayyanu
welcome sir
rayyanu
prostaglandin E2 is the final mediator.
Lemlem
prostaglandin E2 is the final mediator of fever.
Lemlem
yes
Agabi
good evening
Jediel
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2012. OpenStax CNX. Aug 16, 2012 Download for free at http://legacy.cnx.org/content/col11444/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2012' conversation and receive update notifications?

Ask