This page is optimized for mobile devices, if you would prefer the desktop version just click here

7.2 Carbohydrates

Learning objectives

  • Give examples of monosaccharides and polysaccharides
  • Describe the function of monosaccharides and polysaccharides within a cell

The most abundant biomolecules on earth are carbohydrate s . From a chemical viewpoint, carbohydrates are primarily a combination of carbon and water, and many of them have the empirical formula (CH 2 O) n , where n is the number of repeated units. This view represents these molecules simply as “hydrated” carbon atom chains in which water molecules attach to each carbon atom, leading to the term “carbohydrates.” Although all carbohydrates contain carbon, hydrogen, and oxygen, there are some that also contain nitrogen, phosphorus, and/or sulfur. Carbohydrates have myriad different functions. They are abundant in terrestrial ecosystems, many forms of which we use as food sources. These molecules are also vital parts of macromolecular structures that store and transmit genetic information (i.e., DNA and RNA). They are the basis of biological polymers that impart strength to various structural components of organisms (e.g., cellulose and chitin), and they are the primary source of energy storage in the form of starch and glycogen.

Monosaccharides: the sweet ones

In biochemistry, carbohydrates are often called saccharide s , from the Greek sakcharon , meaning sugar, although not all the saccharides are sweet. The simplest carbohydrates are called monosaccharide s , or simple sugars. They are the building blocks (monomers) for the synthesis of polymers or complex carbohydrates, as will be discussed further in this section. Monosaccharides are classified based on the number of carbons in the molecule. General categories are identified using a prefix that indicates the number of carbons and the suffix – ose , which indicates a saccharide; for example, triose (three carbons), tetrose (four carbons), pentose (five carbons), and hexose (six carbons) ( [link] ). The hexose D-glucose is the most abundant monosaccharide in nature. Other very common and abundant hexose monosaccharides are galactose , used to make the disaccharide milk sugar lactose , and the fruit sugar fructose .

Monosaccharides are classified based on the position of the carbonyl group and the number of carbons in the backbone.

Monosaccharides of four or more carbon atoms are typically more stable when they adopt cyclic, or ring, structures. These ring structures result from a chemical reaction between functional groups on opposite ends of the sugar’s flexible carbon chain, namely the carbonyl group and a relatively distant hydroxyl group. Glucose, for example, forms a six-membered ring ( [link] ).

(a) A linear monosaccharide (glucose in this case) forms a cyclic structure. (b) This illustration shows a more realistic depiction of the cyclic monosaccharide structure. Note in these cyclic structural diagrams, the carbon atoms composing the ring are not explicitly shown.
  • Why do monosaccharides form ring structures?

Disaccharides

Two monosaccharide molecules may chemically bond to form a disaccharide . The name given to the covalent bond between the two monosaccharides is a glycosidic bond . Glycosidic bonds form between hydroxyl groups of the two saccharide molecules, an example of the dehydration synthesis described in the previous section of this chapter:

<< Chapter < Page Page > Chapter >>
MCQ 2 FlashCards 3

Read also:

OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.