<< Chapter < Page Chapter >> Page >

Could we have substituted values for y into the second equation to solve for x in [link] ?

Yes, but because x is squared in the second equation this could give us extraneous solutions for x .

For y = 1

y = x 2 + 1 y = x 2 + 1 x 2 = 0 x = ± 0 = 0

This gives us the same value as in the solution.

For y = 2

y = x 2 + 1 2 = x 2 + 1 x 2 = 1 x = ± 1 = ± 1

Notice that −1 is an extraneous solution.

Solve the given system of equations by substitution.

3 x y = −2 2 x 2 y = 0

( 1 2 , 1 2 ) and ( 2 , 8 )

Got questions? Get instant answers now!

Intersection of a circle and a line

Just as with a parabola and a line, there are three possible outcomes when solving a system of equations representing a circle and a line.

Possible types of solutions for the points of intersection of a circle and a line

[link] illustrates possible solution sets for a system of equations involving a circle and a line.

  • No solution. The line does not intersect the circle.
  • One solution. The line is tangent to the circle and intersects the circle at exactly one point.
  • Two solutions. The line crosses the circle and intersects it at two points.

Given a system of equations containing a line and a circle, find the solution.

  1. Solve the linear equation for one of the variables.
  2. Substitute the expression obtained in step one into the equation for the circle.
  3. Solve for the remaining variable.
  4. Check your solutions in both equations.

Finding the intersection of a circle and a line by substitution

Find the intersection of the given circle and the given line by substitution.

x 2 + y 2 = 5 y = 3 x −5

One of the equations has already been solved for y . We will substitute y = 3 x −5 into the equation for the circle.

x 2 + ( 3 x −5 ) 2 = 5 x 2 + 9 x 2 −30 x + 25 = 5 10 x 2 −30 x + 20 = 0

Now, we factor and solve for x .

10 ( x 2 3 x + 2 ) = 0 10 ( x 2 ) ( x 1 ) = 0 x = 2 x = 1

Substitute the two x -values into the original linear equation to solve for y .

y = 3 ( 2 ) −5 = 1 y = 3 ( 1 ) −5 = −2

The line intersects the circle at ( 2 , 1 ) and ( 1 , −2 ) , which can be verified by substituting these ( x , y ) values into both of the original equations. See [link] .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the system of nonlinear equations.

x 2 + y 2 = 10 x −3 y = −10

( −1 , 3 )

Got questions? Get instant answers now!

Solving a system of nonlinear equations using elimination

We have seen that substitution is often the preferred method when a system of equations includes a linear equation and a nonlinear equation. However, when both equations in the system have like variables of the second degree, solving them using elimination by addition is often easier than substitution. Generally, elimination is a far simpler method when the system involves only two equations in two variables (a two-by-two system), rather than a three-by-three system, as there are fewer steps. As an example, we will investigate the possible types of solutions when solving a system of equations representing a circle and an ellipse.

Possible types of solutions for the points of intersection of a circle and an ellipse

[link] illustrates possible solution sets for a system of equations involving a circle and an ellipse .

  • No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the ellipse are a distance away from the other.
  • One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.
  • Two solutions. The circle and the ellipse intersect at two points.
  • Three solutions. The circle and the ellipse intersect at three points.
  • Four solutions. The circle and the ellipse intersect at four points.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask