<< Chapter < Page Chapter >> Page >

An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?

Got questions? Get instant answers now!

Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way up or down? Explain.

Got questions? Get instant answers now!

If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial speed? How would the maximum height to which it rises be affected?

Got questions? Get instant answers now!

The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about 1/6 that of the Earth)?

Got questions? Get instant answers now!

How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations (gravitational acceleration on the Moon is about 1/6 of g size 12{g} {} on Earth)?

Got questions? Get instant answers now!

Problems&Exercises

Assume air resistance is negligible unless otherwise stated.

Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown straight up with an initial velocity of 15.0 m/s. Take the point of release to be y 0 = 0 size 12{y rSub { size 8{0} } =0} {} .

(a) y 1 = 6 . 28 m size 12{y rSub { size 8{1} } =6 "." "28 m"} {} ; v 1 = 10 . 1 m/s size 12{v rSub { size 8{1} } ="10" "." "1 m/s"} {}

(b) y 2 = 10 . 1 m size 12{y rSub { size 8{2} } ="10" "." "1 m"} {} ; v 2 = 5 . 20 m/s size 12{v rSub { size 8{2} } =5 "." "20 m/s"} {}

(c) y 3 = 11 . 5 m ; v 3 = 0 .300 m/s size 12{v rSub { size 8{3} } =0 "." "300"" m/s"} {}

(d) y 4 = 10 .4 m ; v 4 = 4 .60 m/s size 12{v rSub { size 8{4} } = - 4 "." "60"" m/s"} {}

Got questions? Get instant answers now!

Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.

Got questions? Get instant answers now!

A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the ground to rise 1.25 m above the floor in an attempt to get the ball?

v 0 = 4 . 95 m/s size 12{v rSub { size 8{0} } =4 "." "95 m/s"} {}

Got questions? Get instant answers now!

A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.

Got questions? Get instant answers now!

A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s. (a) List the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known and identify its value. Then identify the unknown, and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long is the dolphin in the air? Neglect any effects due to his size or orientation.

(a) a = 9 . 80 m/s 2 size 12{a= - 9 "." "80 m/s" rSup { size 8{2} } } {} ; v 0 = 13 . 0 m/s size 12{v rSub { size 8{0} } ="13" "." "0 m/s"} {} ; y 0 = 0 m size 12{y rSub { size 8{0} } ="0 m"} {}

(b) v = 0 m/s . Unknown is distance y to top of trajectory, where velocity is zero. Use equation v 2 = v 0 2 + 2 a y y 0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (y - y rSub { size 8{0} } right )} {} because it contains all known values except for y , so we can solve for y size 12{y} {} . Solving for y size 12{y} {} gives

v 2 v 0 2 = 2 a y y 0 v 2 v 0 2 2 a = y y 0 y = y 0 + v 2 v 0 2 2 a = 0 m + 0 m/s 2 13.0 m/s 2 2 9.80 m /s 2 = 8.62 m alignl { stack { size 12{v rSup { size 8{2} } - v rSub { size 8{0} } rSup { size 8{2} } =2a left (y - y rSub { size 8{0} } right )} {} #{ {v rSup { size 8{2} } - v rSub { size 8{0} } rSup { size 8{2} } } over {2a} } =y - y rSub { size 8{0} } {} # y=y rSub { size 8{0} } + { {v rSup { size 8{2} } - v rSub { size 8{0} } rSup { size 8{2} } } over {2a} } =0`m+ { { left (0`"m/s" right ) rSup { size 8{2} } - left ("13" "." 0`"m/s" right ) rSup { size 8{2} } } over {2 left ( - 9 "." "80"`"m/s" rSup { size 8{2} } right )} } =8 "." "62"`m {}} } {}

Dolphins measure about 2 meters long and can jump several times their length out of the water, so this is a reasonable result.

(c) 2 . 65 s size 12{2 "." "65 s"} {}

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask